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Preface

To a large extent, social science research involves human beings and their groups
and associated abstract entities like perception, attitude, personality, analytical
skills, methods of teaching, evaluation of performance, merger of cultures, con-
vergence of opinions, extinction or near extinction of a tribe. On the other hand,
research in ‘hard sciences’ like physics, chemistry, or biotechnology involves lar-
gely concrete entities and their observable or measurable features.

Social science is a big domain that encompasses psychology, social anthropol-
ogy, education, political science, economics, and related subjects which have a
bearing on societal issues and concerns. Currently, topics like corporate social
responsibility (CSR), knowledge management, management of talented or gifted
students, leadership, and emotional intelligence have gained a lot of importance and
have attracted quite a few research workers. While we have ‘special’ schools for the
mentally challenged children, we do not have mechanisms to properly handle gifted
or talented children.

While encompassing economics and political science within its ambit, social
science research today challenges many common assumptions in economic theory
or political dogmas or principles. Some of the recent research is focused on the
extent of altruism—as opposed to selfish motives—among various groups of
individuals.

There has been a growing tendency on the part of social science researchers to
quantify various concepts and constructs and to subsequently apply methods and
tools for quantitative analysis of evidences gathered to throw light on the phe-
nomena being investigated. While this tendency should not be discouraged or
curbed, it needs to be pointed out that in many situations such a quantification
cannot be done uniquely and differences in findings by different investigators based
on the same set of basic evidences may lead to completely unwarranted confusion.

Most of the social science research is empirical in nature and, that way, based on
evidences available to research workers. And even when such evidences are culled
from reports or other publications on the research theme, some evidences by way of
pertinent data throwing light on the underlying phenomena are generally involved.
And the quality of such evidences does influence the quality of inferences derived
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from them. In fact, evolution of some special statistical tools and even concepts was
motivated in the context of data collection and analysis in social science research.

While the dichotomy of research as being qualitative and quantitative is some-
what outmoded, it is generally accepted that any research will involve both
induction from factual evidence and deduction of general principles underlying
different phenomena and is quite likely to involve both quantitative analysis and
qualitative reasoning. In fact, uncertainty being the basic feature of facts and factual
evidences about social phenomena, we have to use probabilistic models and sta-
tistical tools to make inductive inferences. It is this recognition that can explain two
generic observations. The first is that quite a few statistical concepts, methods, and
techniques owe their origin to problems which were faced by research workers
investigating individual and collective behaviors of humans in different spheres
of their activities and the impact of the latter on the economy, the society, and the
environment. The second relates to the fact that the social science research has not
always taken full advantage of the emerging concepts, methods, and tools in
statistics to enhance the substantive—and not just technical—content of research
and the findings thereof.

The authors felt the need to apprise research workers in the broad domain of
social science about some well-known and widely used statistical techniques
besides a few others which are yet to find large-scale applications. Mention may be
specifically made about data integration, meta-analysis, content analysis, and
multidimensional analysis—topics which have been dealt with in this book with
due attention to rigor, simplicity, and user-friendliness.

It is sincerely hoped that this book will benefit research in social science and a
feedback from readers will benefit the authors with inputs for improvement in both
content and presentation in the future editions. During the preparation of this book,
the authors used reference texts, books, journal articles, and their own
authored/coauthored research papers—with due acknowledgment of the sources
and seeking/securing permission/NOC from the competent persons/authorities.

Kolkata, India S. P. Mukherjee
September 2018 Bikas K. Sinha

Asis Kumar Chattopadhyay
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Chapter 1
Introduction

1.1 The Domain of Social Sciences

Social sciences correspond to a vast and rapidly growing area that encompasses
investigations into diverse phenomena happening in the society, the economy, and
the environment. In fact, social sciences deal with people—individuals, groups, or
firms. As Bhattacharjee (2012) puts it, social sciences taken as a single branch of
knowledge define the science of people or collection of people such as cultural
groups, trading firms, learned societies, or market economies and their individual or
collective behavior. That way social science embraces psychology (the science of
human behavior), sociology (the science of social groups), political science (dealing
with political groups), and economics (the science of firms,markets, and economies).

Some of the phenomena studied in social sciences are too complex to admit con-
crete statements; on somewe cannot have direct observations ormeasurements; some
are culture (or region) specific while others are generic and common. Data including
laboratory measurements, survey observations, responses to questions, documents,
artifacts, mission and vision statements and similar entities available in social sci-
ences for scientific investigations into the ‘behavior’ phenomenon are so vague,
uncertain, and error-prone that methods of investigation and techniques applied in
physical sciences cannot be immediately used without necessary modifications. In
fact, disagreements among observers or investigators on the same features of the same
individuals are quite considerable, and it becomes difficult to generalize findings or
conclusions based on a single set of data.

Measurements play an important role in any scientific investigation, to the extent
that the quality and adequacy of pertinent measurements do affect the credibility of
findings from the investigation.Measurement in the social sciencesmay be conceived
as a process linking abstract concepts to empirical indicators. It transforms concepts
into accounting indicators or schemes. The following phases in this transformation
can be clearly identified.
1. The abstract definition of the phenomenon or concept that is to be studied.

© Springer Nature Singapore Pte Ltd. 2018
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2 1 Introduction

2. The breakdown of the original concept into ‘constituent concepts’ or ‘dimensions.’
Theoriginal concept corresponds,more often thannot, to a complex set of phenomena
rather than to a single directly observable phenomenon.
3. An indicator is assigned to each dimension.
4. Usually, an aggregate indicator is developed, unless characteristics of the phe-
nomenon do not justify the construction of some synthetic indicator. In other cases,
the aggregate indicator entails construction of an accounting scheme, as for instance
a social accounting matrix or accounts of employment or of health.

All this implies that measurement in the context of social phenomena involves
aspects of both a theoretical and an empirical character. Data are needed to construct
and validate theories, at the same time theories are needed to generate and validate
data.

The breakdown of a phenomenon into measurable dimensions is rarely unique, in
terms of the number of dimensions—preferably non-overlapping or un-correlated—
and their identification in terms of data-based indicators. The problem becomesmore
complicated when the phenomenon is dynamic, and we can develop a reasonable
breakdown at any point of time which may not be a reasonable representation of the
phenomenon at a subsequent time point. In some cases, the dimensions are not really
amenable to a direct enumeration or even identification. For example, when we have
to deal with feelings, aptitudes, and perceptions, we construct scales by assuming
certain continua and by noting the responses to some questions believe to reveal the
chosen dimension.

1.2 Problems in Social Science Research

While scientific studies are invariably concernedwith ‘variations’ in some features or
characteristics across individuals and groups, over time and over space, in the context
of social sciences many of these features which vary randomly are only ‘latent’
variables, unlike ‘manifest’ variables studied in physical or biological phenomena.

Let us consider a typical theme for research, viz. greater frustration among highly
educated young persons about the prevailing employment situation than among peo-
ple with lower levels of education and/or with lesser ambitions in life. To examine the
applicability or validity of this proposition in a particular society or region or some
suitably defined group, we need evidences bearing on entities like ‘ambition,’ ‘levels
of education,’ ‘frustration,’ and ‘perceived employment situation’ in respect of some
individuals in a ‘sample’ that adequately represents the group or population in rela-
tion to which the validity of the proposition was to be examined. And the first and
the third features defy unique and objective definitions and, subsequently, measures.
Evidently, any form of analysis based on some evidences collected on such latent
variables will attract a lot of uncertainty. However, we cannot take our hands off and
have to try out some reasonable surrogates or substitutes which are manifest and can
be quantified. Of course, the choice of surrogates for ‘ambitions’ and ‘frustration’
is not unique, and the responses that are likely to arise to some questions carefully
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constructed to reflect on these latent variables cannot be scaled uniquely and cannot
be subsequently summarized uniquely. We have to keep in mind this non-uniqueness
associated with evidences that are most often necessitated in social science research.

In psychology, we talk of psychophysical experiments essentially dealing with
responses to various stimuli. In education, we sometimes conduct an experiment to
find out which of several alternative ways of teaching a new language is the most
effective. In political science, we can think of an experiment to conduct an election
in several alternative ways to identify the most preferred alternative. And rarely will
experts or referees or judgeswill agree on themost effective ormost preferred ormost
likely alternative. Such differences in assessment is just natural, and the confusion
or inconsistency arising from such disagreement is unavoidable.

Dealing quite often with latent variables which are quantified in various equivocal
terms and based on relatively small sample sizes, conclusions reached in many social
science research studies are hardly ‘reproducible’ and hence are hardly ‘scientific.’
At the same time, we cannot drop all such latent variables or variables which defy
unique quantification from our investigations and we deal with multiple variables in
any study that make it difficult to determine the sample size that will be adequate to
provide credible inferences regarding the many parameters that have to be estimated
or all the hypotheses to be tested, except in terms of a number (of units) that will be
too resource-intensive to really canvas.

Several so-called international agencies which have recently mushroomed and
which attempt to rank different countries in terms of ‘abstract’ entities like ‘charity-
giving’ only serve to dish out unscientific findings that cannot carry any conviction,
but can be used wrongly by some interest groups to portray some countries poorly
or in a lofty manner.

The choice of indicators based most often on some proxies or surrogates of the
feature or characteristic understudy is not unique, and there is hardly any criterion to
accept on in preference to another. Sometimes, a wrongly chosen indicator has led
to lack of credibility of the final result based on an index that combines the various
indicators. Earlier, the United Nations Development Programme took ‘mean years of
schooling’ as an indicator of educational attainment of a country, to be taken along
with the percentage of literates among adults. One should note that mean years of
schooling for an individual as also for a group may increase as a consequence of
stagnation and, that way, may be a negative indicator of educational attainment.

Evidences bearing on different social or cultural phenomena are mostly gathered
through sample surveys, and an important decision to be taken in this regard is the
choice of an appropriate sampling design to come up with an adequate sample size
that can ensure credible estimates of the different parameters of interest and tests
of different hypotheses with reasonable power. It is not uncommon to find a small
sample used to come upwith a general statement that can hardly beget any credibility.

The choice and use of an appropriate sampling design to suit the purpose of a
sample survey throwing up adequate evidences of reasonable quality to make valid
inferences is a bad necessity. And the inferences are to be valid in respect of a certain
‘population’ in which the investigator is interested and from which the sample has
to be drawn. Thus, delineating the population of interest is a primary task, and in
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social science investigations there could arise situations where this task is quite
complicated. For example, if a national sample survey is to be conducted for getting
a good estimate of the number of persons suffering from a certain disease which
attracts some taboo, the problem of delineating the population of interest—which
should not be the general population—poses serious problems.

Another big issue concerns the size and selection of the sample used in surveys
to collect data on both measurable features of individual respondents as also on
traits possessed by them that evade direct measurements. The sample must be large
enough to make the findings reproducible, and the data must be collected with due
care to secure proper evidences that can throw light on the underlying phenomenon
or phenomena. Findings of many investigations fail to become reproducible because
of shortcomings in such surveys.

1.3 Role of Statistics

Statistics, being a scientific method—as distinct from a ‘science’ related to one
type of phenomena—is called for to make inductive inferences regarding various
phenomena like social tension, frustration among educated youths, exploitation and
consequent feeling of alienation among neglected tribals, erosion of patriotic feelings
among the young these days, religious fanaticism leading to tensions in the society,
loyalty of middle-income customers to some brands of a consumer good, loss of
credibility of democratic institutions over time, etc., based on evidences gathered.

In the context of a growing public demand for more credible and insightful view
of distributive justice, and better and more comprehensive analysis of long-term and
wide-area effects and outcomes of social expenditure by different agents, contem-
porary research has to come up with reasonable and defensible answers to such
questions as: How does education affect employment? Does business development
have an impact on crimes? To what extent are family formations and decisions are
affected by economic prospects and employment security?What are the implications
of a forward-looking prevention policy in health, long-term care, and the elderly?

It is true that social scientists are aware of the fact that answers to such questions
are bound to be somewhat specific about time, space, culture, and other consider-
ations. However, howsoever the group of interest may be defined, it will be surely
larger—and, in some cases, much larger—than the ‘sample’ that can be conveniently
canvassed in any research investigation. Thus, the need for inductive inferences based
on evidences and some models is strongly felt.

Inductive inferences are made or have to be made in several distinct situations,
viz.

(1) we have limited evidences available on a phenomenon, and we like to go from
this sample of evidences to make a conclusion about the phenomenon itself (that
really corresponds to an infinite population of evidences that can arise, at least in
theory).
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(2) we observe the currently available in a damaged or an altered set of evidences
pertaining to a phenomenon that occurred in the past and we like to infer about some
aspect(s) of that past phenomenon.

(3) we have observations relating to a phenomenon revealed in the recent past or
currently and we like to infer about how it unfolds in the future.

We must bear in mind the fact that in induction - unlike in deduction - premises
provide some support to the conclusion or inference made on the basis of evidences
available along with some ‘model’ for processing the evidences. In Deduction, the
conclusion is warranted by the premises. This implies that with any inductive infer-
ence is assumed associated some amount of uncertainty, due both to uncertainties in
the evidences made use of as also the uncertainty inherent in the use of statistical
tools for processing the evidences.

This inferential uncertainty has to be quantified if alternative ways for processing
of evidences or even if different sets of evidences bearing on the same phenomenon
are to considered. And the concept of probability is brought in to quantify uncertainty
involved in a given exercise in inductive inference. Evidential uncertainty is also
handled in terms of fuzziness and related measures.

While statisticalmethods and techniques deal essentiallywith ‘variations’ in some
features or characteristics across individuals and groups, over time and over space,
to bring out a pattern behind such variations which can be taken further to offer an
explanation of the observed variation, in the context of social sciences many of these
features which vary randomly are only ‘latent’ variables, unlike ‘manifest’ variables
studied in physical or biological phenomena and even thosewhich are ‘manifest’may
be mostly ‘categorical’ or even ‘nominal’ to which standard statistical techniques
cannot directly apply without some necessary modification. More often than not,
social phenomena reveal interrelations among constructs or variables bearing on them
which cannot be studied in terms of usual dependence analysis. Variables involved
can be classified as endogenous and exogenous, after delineating the boundaries of
the system in which the study is embedded, while the classification as dependent and
independent is not pertinent.

Statistics—meaning both statistical data as also statistical reasoning—are becom-
ing active partners in the world of social science research, promoting and supporting,
using and questioning ongoing theoretical studies. Statistics not only provides valu-
able empirical evidence against which theoretical constructs can be tested, but also
theoretical frameworks putting them to the test of the measurement process. The-
ories, in fact, are the main ingredients for developing the conceptual frameworks
underlying the quantification of social phenomena. Their viability and effectiveness
to cope with the dynamism and comprehensiveness of social change represents a
crucial test of their validity. Theories are validated by empirical data and, therefore,
the quality of data made use of in this context is a vital issue. Only close collab-
oration between social scientists and statisticians can bring about improvements in
social statistics and, that way, in social science researches.

As is the casewith researches in other domains, social science researchgenerally—
if not necessarily—involves collection, aggregation, and analysis of multiple char-
acteristics or features exhibited by the individuals or units in the group under inves-
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tigation. In fact, factor analysis as an important technique for analyzing multivariate
data was introduced in the context of psychological investigations to identify factors
or traits which explain observed correlations between different pairs of subjects in
which individuals have been tested. Methods of clustering and classification also
had their initial applications in social investigations to identify homogeneous groups
based on the different features of the individuals. Multi-dimensional scaling as an
important tool for data visualization cropped up in connection with linguistic abil-
ity studies and related aspects of human behavior. Several techniques like conjoint
analysis were developed during researches on consumer behavior.

In recent times, we quite often access data on multiple attributes based on which
we like to compare several entities like different locations or institutions or societies
or strategies or deployment plan, etc., and assign ranks to these entities so that we
can identify and concentrate on the ‘best’ or the ‘worst’ situation needing ‘urgent’
or ‘convenient’ intervention. In fact, such multi-attribute decision problems are of
great interest and importance in social science research. Indeed, before we can pool
data on the same phenomena from different sources—and such data could be purely
qualitative in character like opinions or judgements or ranks etc—we should exam-
ine the extent to which they agree among themselves. Similarly, meta-analysis or
analysis of analyses carried out on the same phenomenon by different researchers
possibly following different models and methods is required to ensure consolidation
of analyses to enhance the substantial content of any social research study.

We also get data on social interactions among individuals or on decisions of
individuals and groups to move from one place or one profession or one job to
another. Such data can reveal important latent features about the individuals as also
about groups on proper analysis by techniques which have emerged over the years.

1.4 Preview of this Book

This book is not intended to be a standard textbook on the subject of statistics for
social science research covering all types of phenomena studied in social sciences
and the whole gamut of statistical techniques that are being used or are required
to be used in that context. It is just a supplementary reading covering only some
selected techniques which are widely applied and often warranted in some areas
of social science research. In fact, some researches in social sciences have led to
the development and use of some of the methods and techniques discussed in this
book. Content Analysis is one such example. Several techniques in multivariate
data analysis owe their origins to psychology, e.g., factor analysis. The same is
true about scaling techniques originally used in the context of psychological tests.
While Management Science may not be regarded as a component of social sciences,
research in marketing has to deal with human behavior like preferences for certain
brands or grades of a certain product when it comes to a purchase decision. And
there should be no reservation to accept such studies as research in social science.
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Thus, product scaling and multi-dimensional scaling are statistical techniques which
are found useful in marketing research.

Techniques dealt with in this book range from those which relate to problems of
data credibility in studies in which confidentiality is a major concern and responses
are likely to be untrue to techniques involved in pooling data from different sources,
from simple scoring of responses to items in a questionnaire used in an opinion
survey to analysis of multivariate data. Some of these techniques are of relatively
recent origin, while several others have found their way in social sciences as well as
in other areas of research quite some time back.

Statistics—meaning both statistical data as also statistical reasoning—are becom-
ing active partners in the world of social science research, promoting and supporting,
using and questioning ongoing theoretical studies. Statistics not only provides valu-
able empirical evidence against which theoretical constructs can be tested, but also
throws up theoretical frameworks putting them to the test of the measurement pro-
cess. Social science research is primarily empirical in character and inferences made
about a whole lot of social phenomena are inductive in nature, being based on data
which are quite often subjective. Such data-based inferences, taking for granted some
postulates and some model behavior of the data, do naturally use relevant statistical
techniques and corresponding softwares.

Sometimes a distinction ismade between qualitative and quantitative research. It is
difficult to illustrate purely qualitative research, except to indicate that qualitative and
logical thinking to draw conclusions from the data in hand coupled with qualitative
interpretation of such conclusions in the context of the phenomenon or group of
related phenomena also constitute useful research in social science. There has been
a growing tendency among researchers these days to quantify many constructs and
features (variables) that defy direct or unequivocal quantification. While it is true
that statistical methods and techniques are involved in a quantitative analysis, it must
be remembered that such methods and techniques should enhance the substantive
content of research and not just the technical content. The latter objective may call
for application of latest available statistical techniques, while the former focuses on
a pragmatic and, may be, limited use of such techniques only to derive strength from
whatever constitute the premises for making inferences about the phenomena under
investigation.

Right from planning a data-gathering exercise, through making the data collected
and documented amenable to quantitative analysis and carrying out necessary test
for ‘poolability’ of data gathered from different sources, getting appropriate analysis
done on the data as eventually accepted, to reaching evidence-based inferences and
interpreting results in the context of the research project, we need to-day Statistics
in every stage—imaginatively and effectively—to enhance not merely the technical
content of the study but also its substantive content. Data visualization as being
somewhat similar to and still distinct from dimension reduction is quite useful in
exploratory research on certain types of social phenomena like disagreements among
judges in assessing relative positions of certain objects or subjects in terms of some
relevant attributes.
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There arise problems in getting correct or truthful responses to questions per-
taining to sensitive or confidential items like consumption of drugs or income from
dubious sources or unusual behavior, etc., and in such cases, randomised response
techniques [RRTs] are used in some studies to extract reasonable estimates of some
parameters of interest without asking direct questions on the underlying issue. RRT
has been treated in Chap.2 for both qualitative and quantitative data.

Before embarking on any quantitative analysis, qualitative analysis often helps to
answer certain questions relating to disputed authorship of some piece of literature or
to the trend in public opinion about some contemporary issue like limits to freedom
of speech and the like. In such cases, data are scattered in some reports or recorded
speeches or other artefacts like photographs or banners. We can think of a content
analysis (taken up in Chap.3) to come up with some sensible answers to some vexing
questions that can evade a sophisticated approach to secure a ‘correct’ answer.

In many studies on opinions or skills or competencies and similar other attributes,
we use tests or instruments to develop some measures in terms of scores assigned
to responses to different items. And these scores in different subjects, in different
environments and in different times, may not be comparable and we need to scale
themproperly beforewecanmakeuseof the scores for anydecisionor action. Inmany
socioeconomic enquiries, for example, an organizational climate survey to bring out
employees’ perceptions about the climate forwork prevailingwithin the organization,
we often try to seek responses from individual employees on a statement like ‘I get
full cooperation from my peers and colleagues in discharging my responsibilities.’
Each respondent is to tick one of five possible categories to indicate his/her perception
about this issue, viz. strongly disagree, disagree, undecided or indifferent, agree, and
strongly agree. The number of response categories could be seven or nine or some
other odd integer. Different scaling techniques have been discussed in Chap.4.

Recent times see a wide variety of data streaming in from different sources to
throw light on the same phenomenon may be dispersed over different locations or
institutions or groups. In respect of each such location/institution/group, the datamay
not be all equally revealing about the nature andmagnitude of the phenomenon under
study. We are required to rank these different entities to identify the ‘best’ and the
‘worst’ situations, so that we can prioritize our interventions in them accordingly.
There are a few techniques for this multi-attribute decision-making problem, and
we focus on a widely used technique, viz. TOPSIS where the concept of an ‘ideal’
situation and distances of different situations from the ‘ideal’ are the components.
The use of this technique for data integration has been explained with an illustration
from environmental pollution data in Chap. 5.

Chapter6 is devoted to an emerging topic of judging quantitatively agreement
among different raters or experts or judges in situations like diagnosis by several
medical men of a disease some patient is suffering from, or reliability of a test
battery in a psychometric test as judged by a group of subject experts, or relative
importance of a particular feature of a product or service in assessing the latter’s
quality in the eyes of several potential customers, or opinions expressed by several
political analysts on the likely impact of an agreement signed between two countries
on international trade, and the like. Any attempt to pool the assessments or ratings
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or diagnoses has to be preceded by a statistical assessment of agreement among the
opinions or judgements. This is not the same as application of Delphi or similar
techniques to make the ratings or opinions or judgements converge. All this has been
explained with ample illustrations in Chap.6.

Meta-analysis is another recent paradigm in social science research. Here the idea
is tomake use of all the available evidence whichmay be in the form of several pieces
of information (derived from some data) from different sources, some of which may
be in the form of expert opinions. Evaluation of each piece of information enables
us to determine the weight to be attached to it in pooling information. However,
pooling information demands that different pieces of information are not conflicting
with each other. Finally, we have to choose an appropriate method to combine the
different pieces of information and express the reliability of the final conclusion.
This is the content of Chap.7.

Coming to data analysis, it must be admitted that such data are necessarily mul-
tivariate and, more often than not, the data set covers a large number of units or
individuals which differ among themselves to different extents in respect of several
observable or measurable features which are correlated to different extents one with
the others. It will be desirable to group such units or individuals into homogeneous
clusters before we analyze relations among the variable features within each clus-
ter separately. And, we should even start looking at the variables themselves before
we subject them to further analysis. Toward that reduction in dimensions, we may
profitably use factor analysis as also principal component analysis, and we identify
and extract artificial combinations or components that can be carefully interpreted
in terms of the research objectives.

Whenever a research encompasses more than one periods of time or, say, genera-
tions of individuals, we may be interested in noting the changes or transitions of the
individuals across social groups or occupations. Such mobility studies are also quite
useful in market research to reveal customer loyalty to certain product or service
brands using a ‘mover–stayer model.’ In such mobility studies, Markov Chains and
related tools play an important role. In fact, Renewal-Reward Process models have
been used in studies on occupational mobility. Chapter12 is devoted to the subject
of social and occupational mobility along with some related issues in manpower
planning.

Coming to other aspects of data analysis, it must be admitted that such data
are necessarily multivariate and, more often than not, the data set covers a large
number of units or individuals which differ among themselves to different extents in
respect of several observable or measurable features which are correlated to different
extents one with the others. It will be desirable to group such units or individuals into
homogeneous clusters beforewe analyze relations among the variable featureswithin
each cluster separately. And, we should even start looking at the variables themselves
before we subject them to further analysis. Toward that reduction in dimensions, we
may profitably use factor analysis as also principal component analysis to identify
and extract artificial combinations or components that can be carefully interpreted in
terms of the research objectives. In Chap. 8, we deal with clustering techniques and



10 1 Introduction

Discriminant Analysis while in Chap.9, we discuss principal component analysis,
and in Chap.10, we take up study of factor analysis.

Under multivariate analysis, two very important techniques are clustering and
classification.Under the problemof clustering,we try tofindout the unknownnumber
of homogeneous inherent groups in a data set aswell as the structure of the groups.But
under classification, the basic problem is discrimination of objects into some known
groups. One of the most basic abilities of living creatures involves the grouping
of similar objects to produce a classification. Classification is fundamental to most
branches of science. The information on which the derived classification is based
is generally a set of variable values recorded for each object or individual in the
investigation, and clusters are constructed so that individuals within clusters are
similar with respect to their variable values and different from individuals in other
clusters. The second set of statistical techniques concerned with grouping is known
as discriminant or assignment methods. Here the classification scheme is known a
priori and the problem is how to devise rules for allocating unclassified individuals
to one or other of the known classes.

Principal component analysis (PCA) is a dimension reduction procedure. The
method is useful when we have obtained data on a number of variables (possibly
a large number of variables), and believe that there is some redundancy in those
variables. In this case, redundancy means that some of the variables are highly corre-
lated with one another, possibly because they are measuring the same phenomenon.
Because of this redundancy, it should be possible to reduce the observed variables
into a smaller number of principal components (artificial variables) that will account
for most of the variance in the observed variables.

Factor analysis presented in Chap.10 is a statistical method used to study the
dimensionality of a set of variables. In factor analysis, latent variables represent
unobserved constructs and are referred to as factors. Factor analysis attempts to
identify underlying variables, or factors, that explain the pattern of correlationswithin
a set of observed variables. It is often used in data reduction to identify a small number
of factors that explain most of the variance that is observed in a much larger number
of manifest variables. Its basic difference from principal component analysis (PCA)
is that in PCA variables are replaced by a small number of linear combinations which
are expected to explain a larger part of the variation, but it is usually not possible
to correlate these linear combinations with some physical phenomena. But in factor
analysis, the newly derived latent variables are extracted as factors representing some
physical phenomena. Given a set of scores for a group of persons corresponding to
aptitude tests in subjects like mathematics, physics, statistics and their performances
in 100-m race, long jump, high jump, etc., one may extract two latent factors, viz.
intellectual ability and physical ability.

There are situations where we like to compare entities like music, or dance or an
object of art or just any product available in many variants or brands and we need
to scale these entities (generally called products) to get an idea about the relative
merits of the different entities or relative distances between them on a straight line
or a two- or three-dimensional surface. We have one-dimensional scaling provided
by Thurstone’s Law of Comparative Judgment, further taken up by Mosteller and
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others. To get a better visualization of the relative distances or dissimilarities among
the entities, multi-dimensional scaling was introduced by Torgersen. In Chap.11, we
discuss about this aspect of data analysis.

Whenever a research encompasses more than one periods of time or, say, genera-
tions of individuals, we may be interested in noting the changes or transitions of the
individuals across social groups or occupations. Such mobility studies are also quite
useful in market research to reveal customer loyalty to certain product or service
brands using a ‘mover–stayer model.’ In such mobility studies, Markov Chains and
related tools play an important role. In fact, Renewal-Reward Process models have
been used in studies on occupational mobility. Chapter12 is devoted to the subject
of social and occupational mobility along with some related issues in manpower
planning.

Social network refers to the articulation of a social relationship, ascribed or
achieved, among individuals, families, households, villages, communities, regions,
etc. The study of social networks is a fast widening multidisciplinary area involving
social, mathematical, statistical, and computer sciences. It has its own parameters and
methodological issues and tools. Social network analysis (abbreviated SNA) means
an analysis of various characteristic of the pattern of distribution of relational ties in
a social group and drawing inferences about the network as a whole or about those
belonging to it considered individually or in groups. Bandyopadhyay et al. (2009)
have discussed in detail how graph–theoretical and statistical techniques can be used
to study some important parameters of global social networks and illustrate their
uses in social science studies with some examples derived from real-life surveys.
In Chap.13, we consider a few features or characteristics of a social network and
explain how these features can be measured. Then we discuss the possibility of using
sampling techniques in case of large networks.
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Chapter 2
Randomized Response Techniques

2.1 Introduction

Almost half a century back, randomized response technique/methodology
[RRT/RRM] was first introduced and popularized by Warner. The idea is to be able
to elicit a truthful response on sensitive issues(s) from the sampled respondents, so
that eventually reliable estimates of some of their feature(s) can be estimated for the
population as a whole. Since then, survey theoreticians and survey practitioners have
contributed significantly in this area of survey methodological research.

Warner (1965) introduced an ingenious device to gather reliable data relating to
such issues that may attach unethical stigmas in a civilized society. Therefore, direct
questionnaire method is likely to result in refusal/denial or occasionally masked
untruthful response. In the context of a society, issues such as abortions, spouse-
mishandling, finding HIV tests positive, underreporting income tax returns, false
claims for social benefits may have sensitive/unethical stigmas attached. People gen-
erally tend to hide public revelations of such vices.

In such circumstances, Warner suggested a way to avoid attempting to collect
direct responses (DRs) from the selected respondents—either individually or in
groups. Instead, he recommended implementation of what is termed as random-
ized response technique (RRT) in order to collect information from each sampled
respondent when a stigmatizing issue is under contemplation in a study.

There is a huge amount of the published literature in this area of applied research.
We refer to an excellent expository early book on RRT by Chaudhuri and Mukerjee
(1988). Hedayat and Sinha (1991), Chap.11, also provides a fairly complete account
of RRTs. Twomost recent books (Chaudhuri 2011; Chaudhuri andChristofides 2013)
are worth mentioning as well.
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2.2 Warner’s Randomized Response Technique [RRT]

To fix ideas, we consider sampling of individuals from a reference survey population
in order to estimate the population proportion of a specific feature such as false
claims for social benefits which is likely to be stigmatizing in nature. Therefore,
direct questionnaire procedure is likely to be ruled out. In this context,Warner (1965)
suggested the following approach.

Note that we are addressing the issue of eliciting truthful information on a sen-
sitive qualitative feature [SQlF], with exactly one of the binary responses [yes/no]
attached to each individual in the population, and we are interested in estimation of
the population proportion P of ‘yes’ response(s) based on our study of the sampled
respondents. The problem is to provide (i) amethod of ascertaining truthful responses
from the respondents facing the SQlF in the surveyed population and (ii) (unbiased)
estimator of P. Generally, simple random sampling with replacement of respondents
from the reference population [presumably large] is contemplated.

With reference to a single SQlF, its possession [yes]will be denoted by the attribute
Q and its non-possession [no] will be denoted by the negation of Q, that is, Q̄.
The simplest related question technique of Warner (1965) refers to preparation of
two identical and indistinguishable decks of cards with known multiple but unequal
number of copies of both. One set [Set I] will have the instruction on the back of each
card: Answer Q truthfully. Naturally, the truthful response should be ‘yes’ in case
the respondent possesses the attribute Q and ‘no’ otherwise. The other set [Set II]
deals with the instruction: Answer Q̄ truthfully. This time a response of ‘yes’ would
mean the respondent does not possess Q; otherwise, the response is ‘no’ implying
that the respondent does possess Q. We may denote by p the known proportion of
cards of Q category so that 1 − p is the proportion of cards of Q̄ category. A general
instruction is given to all respondents: Each respondent is to select one card at random
and with replacement out of the full deck and act as per the instruction given at the
back of the selected card. The respondents are supposed to report only the yes/no
answers—without divulging what kind of card had been selected by them. Naturally,
this randomization device of selection of a card ensures that a respondent can make a
choice ofQwith probability p or a choice of Q̄with probability 1 − p, 0 < p �= 0.5 <

1, being known beforehand. It is believed that this randomization mechanism will
convince the respondent about retaining the confidentiality of the response [yes/no]
provided by him/her, without disclosing the choice of the card bearing the labelQ or
Q̄ to the interviewer! In otherwords, the investigator is not to be told about the specific
question chosen/answered by the respondent. For obvious reason, this method is also
known asmirrored question design. See Blair et al. (2015) for descriptions of this and
a few more RRMs. Routine formulae are there to work out the details of estimation,
etc., in this and various other complicated randomization frameworks. In this simple
randomized response framework, we proceed as follows toward unbiased estimation
of P:

Note that a ‘yes’ answer has two sources: choice of one card from Set I, followed
by ‘yes’ response, or choice of one card from Set II, followed by ‘yes’ response.
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Therefore, P[yes] = pP + (1 − p)(1 − P) = P(2p − 1) + (1 − p). This we equate
to the sample proportion of ‘yes’ responses among the total number of responses.

If there are n respondents and out of them, eventually, some f of them report ‘yes,’
then we have the defining equation:

f /n = P(2p − 1) + (1 − p)

whence

P̂ = f /n − (1 − p)

2p − 1
.

It is seen from the above why we need the condition: p �= 0.5. It follows that

(i)V (P̂) = P(1 − P)/n + p(1 − p)/n(2p − 1)2

(ii)V̂ = p(1 − p)/n(2p − 1)2

+ [(1 − p)2 + P̂(2p − 1) − f ( f − 1)/n(n − 1)]/n(2p − 1)2.

This last expression, when square-rooted, gives what is known as the estimated
standard error (s.e.) of P̂.

Remark 2.1 The above results are based on the fact that f follows binomial distribu-
tion with parameters (n, θ) where n is the sample size [number of respondents] and
θ = P(2p − 1) + (1 − p), being the probability of ‘yes’ response by a respondent
under the RRM in use. It is known that f /n serves as an unbiased estimate for θ
and f ( f − 1)/n(n − 1) serves as an unbiased estimate for θ2. The rest are simple
algebraic manipulations. We will refer to this method as RRM1.

Illustrative Example 2.1 We choose n = 120 and p = 0.40. Suppose the survey
yields f = 57. This suggests

P̂ = [57/120 − 0.60]/[−0.20] = 0.625; s.e.
(P̂) = √

24/48 + [.36 − .125 − .2235]/48 = 0.0724.

Remark 2.2 Use of both versions [affirmative and negative] of the sensitive question
Q may, at times, lead to confusion among the respondents. This was soon realized,
and the RRT was accordingly modified by introducing what is called unrelated ques-
tionnaire method. We will designate this method as RRM2. This is described below.

Once again, we are in the framework of eliciting truthful response on the sensitive
question Q but using a modified version of the RRT described above. This time,
again, we form two sets of cards, and for the Set I, we keep the same instruction on
the back of each card. For Set II, we rephrase the instruction by introducing a simple-
minded question like: Were you born in the first quarter of a year? This question is
denoted by the symbolQ∗ so that it also has two forms of the true reply: ‘yes’ for the
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affirmative reply and ‘no’ for its negation. When this RRT of eliciting response is
executed, the chance of a ‘yes’ response is given by: pP + (1 − p)/4. This is because
in a random sample of respondents about 1/4th are likely to have been born in the
first quarter of a year. As in the above, this is equated to the sample proportion of
‘yes’ responses, i.e., f /n, and thereby, we obtain P̂ = [ f /n − (1 − p)/4]/p. It is a
routine task to work out V (P̂), and this is given below:

V (P̂) = (1 − p + 4pP)(3 + p − 4pP)/16np2

= [(1 − p)(3 + p) + 8p(1 + p)P − 16p2P2]/16np2.

To compute V̂ (P̂), in the above expression,we have to replaceP by P̂which is already
shown above. Further, also we need to replace P2 in the above by an expression to
be derived from the defining equation:

f ( f − 1)/n(n − 1) = [ pP + (1 − p)/4]2

upon expansion of the RHS expression and replacement of P by P̂ derived earlier.
Once estimated variance estimate is obtained, we compute s.e. of the estimate by
taking the square root of the above quantity. Note that this time the distribution of f
is binomial with parameters (n, η = pP + (1 − p)/4).

Illustrative Example 2.2 We choose n = 120 and p = 0.40. Suppose survey yields
f = 57. This suggests

P̂ = [57/120 − 0.15]/[0.40] = 0.8125.
Estimating equation for P̂2 is given by

0.2235 = p2P2 + p(1 − p)P/2 + (1 − p)2/16 = 0.16P2 + 0.0975 + 0.0225;
0.1035 = 0.16P2; P̂2 = 0.6469.

V̂ (P̂) = [2.04 + 1.56 − 1.6560]/307.2 = 0.0063; s.e. = 0.0795.

Remark 2.3 In the above and in many such similar contexts, use of stack of cards
of different colors can be conveniently replaced by use of spinner wheels marked
with different colors in different parts. Thus, for example, red color may occupy 40
percent of the area in the wheel. Naturally, we are referring to the back side of the
wheel for coloring purposes. This should be understood, and we will not dwell with
this version of the randomization.
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2.3 Generalizations of RRMs

We now introduce several generalizations of the above RRMs—these are dictated
by real-life applications. Always, the idea is to provide increased and perceived
protection to the respondents from the perspective of protecting their confidentiality.
In RRM2,we replaced Q̄ by a completely simple-minded questionwhich had nothing
to do with the stigmatizing question Q. It was at times felt that this might still throw
some doubt in the minds of the respondents. It is advisable that we utilize a question
in the Set II which is not too far removed from Q which was taken to be false claims
for social benefits. What about using ‘My family makes 2 or more out-of-state trips
on an average every year’ whose affirmative version we may denote by Q∗ while
the negation is denoted by Q̄∗? This may not be totally stigmatizing in nature, and
the respondents may not feel like either abstaining or giving a wrong answer if a
card from Set II is actually selected in the randomization process. However, the true
proportion of respondents (in the population as a whole) belonging to the category of
Q∗ may not be known beforehand. That simplymeans that this time f will still follow
binomial distribution with parameters (n, η) where η = pP + (1 − p)P∗ where P∗
stands for the chance ofQ∗, the affirmative version of the choice placed in the cards of
Set II. Therefore, we may still develop the defining equation f /n = pP + (1 − p)P∗.
Whereas in the cases of RRM1 and RRM2, in this kind of equation, P was the only
unknown proportion to be estimated, this time we have two unknowns, viz., P and
P∗. Therefore, we need one more equation involving these two unknown parameters.
This calls for the following RRM3.

We divide thewhole collection of respondents into two equal/almost equal groups,
say of sizes n1 and n2. For Group I, we collect information by using a version of
RRM2, viz., by replacing the question related to birth by the question related to Q∗
on family trips. This results in the pair ( f 1, n1) upon implementation. For notational
simplicity and for ease of making generalizations, we use p1 for p. Therefore, f 1 is
distributed as binomial (n1, η1 where η1 = p1P + (1 − p1)P∗. Likewise, for Group
II, based on the data of the form ( f 2, n2), from the cards drawn from Set II, it turns
out that f 2 is binomial with parameters (n2, η2) where η2 = p2P + (1 − p2)P∗.
Note that η1 and η2 are, respectively, the proportions of cards in the two Sets I and
II bearing the affirmative versions of Q and Q∗, respectively.

We have generated two equations, viz.,

f 1/n1 = η1 = p1P + (1 − p1)P∗ : f 2/n2 = η2 = p2P + (1 − p2)P∗.

From the above, we may easily solve the primary parameter P [as well as the other
parameter P∗].

The solutions are linear functions of the sample proportions f 1/n1 and f 2/n2.
Therefore, we can work out variance estimates and estimated variances in a routine
manner. It must be noted that the solutions exist only when our choice is such that
p1 �= p2.
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Illustrative Example 2.3 We choose n1 = n2 = 120 and p1 = 0.40 and p2 =
0.60. Suppose survey yields f 1 = 57 and f 2 = 75. This leads to the equations:

57/120 = 0.40P + 0.60P∗; 75/120 = 0.60P + 0.40P∗.

Therefore, the estimates for P and P∗ are 0.925 and 0.175, respectively. Before
proceeding further with other approaches/methods, we will digress for a moment to
discuss a source of non-response and its follow-up studies.

2.4 Not-at-Homes: Source of Non-response

While extracting information through a direct response survey on some features
[qualitative or quantitative] from the respondents in a survey population, it is gener-
ally believed that there would be cooperation from the respondents—at least when
the features are non-sensitive in nature. Of course, for sensitive features, we need to
develop RRTs. However, there are instances where we encounter non-response for
various reasons evenwhen the features are non-evasive in nature. One of such sources
is attributed to ‘Not-at-homes.’ Survey sampling researchers attempted to study this
phenomenon. Notable contributors are: Yates (1946), Hansen and Hurwitz (1946),
Hartley (1946), Politz and Simmons (1949), and Deming (1953). Their studies were
essentially geared toward regular features of the survey questions. The technique for
extraction of ‘response’ is known as Hartley–Politz–Simmons technique.

Much later, Rao (2014) considered the case of handling situations, wherein it is
unlikely for a respondent to reveal truthful answer(s) even when it is non-sensitive
in nature. It was followed up by yet another follow-up paper by Rao et al. (2016).
We will not elaborate on this issue further.

2.5 RRMs—Further Generalizations

Following Blair et al. (2015), we will now briefly discuss two more generalizations
of the basic RRM.

(i) Forced Response Designs [FRD]: This RRM incorporates a forced response of
yes as well as a forced response of no. The idea is to label forced yes (no) to the
outcome 1(6), while for any other outcome of the throw of a regular [unbiased]
six-faced die the respondent is supposed to give truthful response in terms of
yes/no for possession of the sensitive stigmatizing feature. Thus eventually, we
have only yes or no response from each respondent.

(ii) Disguised Response Design [DRD]: The yes response to the sensitive feature is
meant to be identified as the YES Stack of black and red cards. Likewise, the no
response to the sensitive feature is to be identified as the NO Stack of black and
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red cards. Total number of cards is the same for both types of stacks. Further, ifwe
have 80 percent red cards inYESStack, thenwemust have 20 percent red cards in
the NO Stack. This may be arbitrary but must be predetermined and be the same
for all respondents. Every respondent is supposed to truthfully implement his
choice of the correct stack by referring to the sensitive stigmatizing feature under
study. Once this is done, he/she is supposed to draw a card at random from the
correctly selected stack and only disclose the color of the card drawn—without
any mention of the stack identified. Whether the respondent belongs to yes/no
category [in respect of the feature under study] is his/her truthful confession to
himself/herself.

Illustrative Example 2.4 Here, we discuss about FRD. We take n = 300, and sup-
pose after implementation of the FRD, we obtain: yes count = 180 and no count
= 120. Let P be the true proportion of persons possessing the sensitive feature in
the population. Then, the chance of yes response from a respondent is given by
1/6 + 4P/6 and we equate this to the sample proportion = 180/300. This yields
P̂ = 0.65. Further, it can be shown that

V̂ (P̂) = 9[ f (n − f )/n2(n − 1)]/4 = 0.0018,

upon simplification. Hence, s.e. of the estimate = 0.0424.

Illustrative Example 2.5 We take upDRDnow.We startwithn = 300 respondents,
and suppose, upon implementation of theDRD,we obtain: red count= 180 and black
count = 120. Let P be the true proportion of persons possessing the sensitive feature
in the population. Then, the chance of red card being drawn is given by 0.8P +
0.2(1 − P) = 0.2 + 0.6P. We equate this to the sample proportion = 180/300. This
yields P̂ = 0.6667. Further,

V̂ (P̂) = 25[ f (n − f )/n2(n − 1)]/9 = 0.0021,

upon simplification. Hence, s.e. of the estimate 0.0458.

2.6 RRMs for Two Independent Stigmatizing Features

In case there are two or more sensitive qualitative features of a population to be stud-
ied, one can always study them separately. However, a joint study makes more sense
since less effort will be spent to capture incidence. The RRM2 discussed above can
be conveniently generalized to cover this situation. In the deck of cards, we accom-
modate cards of three different colors: black, red, and yellow. Black [red/yellow]
cards read: Answer Q1 [Q2/Q3] truthfully where Q1 refers to SQlF1: underreport-
ing income tax returns; Q2 refers to SQlF2: false claims for social benefits; and Q3
refers to a simple-minded innocent statement like on an averagemy familymakes 2 or
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more out-of-state trips per year. All the three questions seek truthful binary response:
yes/no. We presume that apart from the unknown proportions P1,P2 referring to
chances of underreporting of IT returns and making false claims for social benefits,
respectively, the other parameter P3 referring to asserting the statement about family
trips is also unknown [and, may be incidentally estimated]. Thus, we are in the frame-
work of three unknown parameters, and hence, we need three different [technically
called linearly independent] estimating equations. We proceed by dividing the total
number of respondents into three equal/almost equal groups. Also, we need three
sets of cards with three different proportions of color compositions.

Illustrative Example 2.6 We start with n = 301, n1 = n2 = 100, n3 = 101. Fur-
ther, color distribution of the cards in the three sets is taken as

Set I : B : R : Y : : 25, 30, and 45 percents;
Set II : B : R : Y : : 30, 45, and 25 percents;
Set III : B : R : Y : : 45, 25, and 30 percents.

Each respondent from Group I will pick up a card at random from Set I and will
only communicate the truthful answer: yes/no—without divulging the color of the
card drawn. Likewise, for respondents from the other two groups, same conditions
apply. Suppose the proportions of yes answers are: 55/100, 43/100, and 51/101. Then,
the defining equations are:

0.55 = 0.25P1 + 0.30P2 + 0.45P3; 0.43 = 0.30P1 + 0.45P2 + 0.25P3;

0.52 = 0.45P1 + 0.25P2 + 0.0.30P3.

From the above, we derive the estimates as

P̂1 = 0.5155; P̂2 = 0.1454; P̂3 = 0.8385.

Remark 2.4 In the above example, it is tacitly assumed that the two sensitive fea-
tures are independently distributed over the reference population. Otherwise, the two
should be jointly studied in terms of 2 × 2 classification: [(Yes, Yes), (Yes, No), (No,
Yes), (No, No)]. This and much more are discussed in the published literature. See,
for example, Hedayat and Sinha (1991).

2.7 Toward Perception of Increased Protection
of Confidentiality

Since the introduction of RRT, survey sampling practitioners/theoreticians have paid
due attention to this area of survey methodological research. As has been mentioned,
the purpose is to be able to elicit a truthful response on sensitive feature(s) from the
sampled respondents, so that eventually the population proportion of incidence of



2.7 Toward Perception of Increased Protection of Confidentiality 21

the sensitive feature can be unbiasedly estimated. Toward this, a novel technique was
introduced by Raghavarao and Federer (1979) and it was termed block total response
[BTR] technique. A precursor to this study was undertaken by Smith et al. (1974).
We propose to discuss the basic BTR technique with an illustrative example.

As usual, we start with one SQlF, sayQ [with an unknown incidence proportion P
to be estimated from the survey] and along with it we also consider a collection of 8
RQlFs [Q1,Q2, . . . ,Q8] which are simple-minded and yet binary response queries.
We thus have a total collection of nine QlFs, including the SQlF. The steps to be
followed are:

(i) We prepare several blocks of questions, i.e., a questionnaire involving, say some
4 of the RQlFs and the SQlF in each block. The only condition to be satisfied in
the formation of the blocks is that each RQlF must appear the same number of
times in the entire collection of blocks. Additionally, we also prepare a Master
Block Bl∗ : [Q1,Q2, . . . ,Q8] comprising of all the RQlFs.
For example, we may choose

Bl 1 : [Q1,Q2,Q4,Q6;Q];Bl 2 : [Q1,Q3,Q6,Q7;Q],

Bl 3 : [Q2,Q3,Q5,Q8;Q];Bl 4 : [Q4,Q5,Q7,Q8;Q].

(ii) Since we have a total of five blocks, we need five groups of respondents. The
first four groups for dealing with blocks Bl 1 − Bl 4 are assumed to have the
same size, say 50 each. In addition, we will go for some 30 respondents, for
example, for the block Bl∗. So, we are dealing with a collection of say 230
respondents—randomly divided into these five groups.

(iii) Each member of the first group of respondents is exposed to the questions
contained inBl 1, and he/she is told to respond truthfully to each of the RQlFs as
also to theQ. However, he/she is supposed to report/divulge only the block total
response [BTR]—the total score in terms of yes responses. This is continued
for all other blocks as also for the Master Block Bl∗.

(iv) The above completes the survey aspect of the BTR technique. Suppose we end
up with the following summary data in terms of average score in each block
per respondent:

Bl 1 : 0.285;Bl 2 : 0.354;Bl 3 : 0.328;Bl 4 : 0.396;Bl∗ : 0.395.

(v) An estimate of the incidence proportion P of the SQlF is given by the compu-
tational formula:

(a) Sum of average scores in the first four blocks = 1.363, and this is equated
to [2∑

Pi + 4P]/5.
(b) The average score of 0.395 in the last block is equated to

∑
Pi/8.

(c) From the above, P̂ = [5 × 1.363 − 2 × 8 × 0.395]/4 = 0.324.
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Remark 2.5 The above illustration arises out of a very general approach toward BTR
technique. Naturally, once a respondent is told to provide only the BTR without
divulging any kind of details as to the nature of individual responses, the investigator
may be assured of increased cooperation from the respondents. This basic BTR
technique has been extended further with an aim to provide enhanced protection of
privacy to the respondents. The details may be found in Nandy et al. (2016) and
Sinha (2017).

2.8 Confidentiality Protection in the Study of Quantitative
Features

Consider a situation wherein we are dealing with a finite [labeled] population of
size N and there is a sensitive qualitative study variable Y for which the ‘true’
values are Y1,Y2, . . . ,YN for the units in their respective orders. To start with, these
values are unknown and we want to unbiasedly estimate the finite population mean
Ȳ = ∑

i Yi/N .
We may adopt SRSWOR(N , n) or any other suitably defined fixed size (n) sam-

pling design and draw a random sample of n respondents. Had the study variable
been non-sensitive in nature, we could take recourse to ‘direct questioning’ involv-
ing the sampled respondents. In a very general setup, we may make use of the
Horvitz–Thompson estimate [HTE, for short]. It simplifies ȳ when SRSWOR(N , n)
is adopted. However, we are dealing with a sensitive characteristic [such as ‘income
accrued through illegal profession’] and we need to use a suitably defined RRT. Here,
we propose an RRT for this purpose.

Assume that the true Y -values are completely covered by a pool of K known
quantities like M1,M2, . . . ,MK . The set of M -values may even comprise a larger
set. Therefore, in effect, we are assuming that the N population values are discrete
in nature.

We choose a small fraction δ and proceed to deploy RRT as is explained in the
following example with K = 10 and δ = 0.2.

We prepare 25 identical cards, and at the back of the cards we give instructions:
For each of five cards, it reads at the back: ‘Report your true income accrued through
illegal profession.’ For the rest of the 20 cards, we use them in pairs, and for the ith
pair, it reads at the back of both the cards: ‘Report Mi’; i = 1, 2, . . . , 10.

Each respondent chooses a card at random out of the 25 cards, reads out the back
side, and acts accordingly. We assume that the respondents act honestly and provide
‘truthful’ figure—no matter which card is chosen—without disclosing in any way
the nature of the card.

Note that the chance of choosing a card with marking as ‘Report your true
income. . .’ is 5/25 = 0.20 which coincides with the chosen value of δ. On the
other hand, chance of picking up a card corresponding to any specified value Mi

is 2/25 = 0.08 which is equal to (1 − δ)/K .
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Using the notations δ andK , for the chosen sample of n respondents, we have thus
collected the responses to be denoted by R1,R2, . . . ,Rn. Each response is random in
nature and

E(Ri) = δYi + (1 − δ)M̄ (2.8.1)

where M̄ = ∑
i Mi/K and Yi is the true [unknown] response of the ith sampled

respondent. From this, it follows that Yi can be unbiasedly estimated as

Ŷi = [Ri − (1 − δ)M̄ ]/δ. (2.8.2)

Hence, an unbiased estimate for the finite population mean, based on estimates of
Yi’s, is obtained by referring to HTE in general and to the sample mean of estimated
Y ’s in case SRSWOR has been implemented during sample selection. The proof of
this claim rests on the formula: E = E1E2. Therefore,

ˆ̄Y =
∑

i

Ŷi/n. (2.8.3)

In the above, for K = 10 and δ = 0.2, Ŷi = [5Ri − 4M̄ ] and hence ˆ̄Y = 5R̄ − 4M̄
is the estimate of population mean, under SRSWOR sampling. Here, R̄ refers to the
sample mean of the sampled R’s and M̄ refers to the mean of the given M ’s.

Remark 2.6 Itmaybenoted that in the above it is tacitly assumed that eachYi matches
with one of the given values Mi’s. However, no sampled respondent is supposed to
divulge which M -value matched his/her true value of Y .

Below, we proceed to work out a formula for the estimated standard error [s.e.]
of the estimate of the population mean based on the above procedure. In addition to
E(Ri) displayed in (2.8.1), we have

E(R2
i ) = δY 2

i + (1 − δ)Q̄M (2.8.4)

where Q̄M = ∑
i M

2
i /K is the mean of squares of theM -values.

These suggest

V (Ri) = δ(1 − δ)Y 2
i + (1 − δ)[Q̄M − (1 − δ)M̄ 2] − 2δ(1 − δ)YiM̄ . (2.8.5)

From (2.8.4), it follows that

Ŷ 2
i = [R2

i − (1 − δ)Q̄M ]/δ (2.8.6)

Using (2.8.6), we may deduce that
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V̂ (Ri) = (1 − δ)[R2
i − (1 − δ)Q̄M ]+

(1 − δ)[Q̄M − (1 − δ)M̄ 2] − 2(1 − δ)M̄ [Ri − (1 − δ)M̄ ] (2.8.7)

which simplifies to

(1 − δ)[Ri − M̄ ]2 + δ(1 − δ)[Q̄M − M̄ 2] (2.8.8)

We now proceed to work out estimated standard error for the estimate of the finite
population mean under SRSWOR(N , n). Clearly, under SRSWOR(N , n),

ˆ̄Y =
∑

i

Ŷi/n; Ŷi = [Ri − M̄ (1 − δ)]/δ (2.8.9)

Moreover,

V [ ˆ̄Y ] = V1E2 + E1V2 (2.8.10)

Note that

V1E2 = V1

(
∑

i

Yi/n

)

= (1/n − 1/N )S2
Y (2.8.11)

whereS2
Y refers to the populationvarianceofY -valueswith divisorN − 1.To estimate

this, we usually employ the sample counterpart of S2
Y , viz., s

2
Y = sumi(Yi − Ȳ )2/

(n − 1). Here, of course, Yi’s are unknown and are being estimated in terms of the
R’s by an application of RRT. The expression for s2Y involves square terms, i.e., Y 2

i ’s
and cross-product terms, i.e., YiYj’s. From (2.8.6), we deduce expressions for Ŷ 2

i ’s.
Since the respondents act independently, estimates of the product terms YiYj’s are
also derived by the product of terms of the form (2.8.4). This takes care of estimate
for V1E2 term.

Next, note that for every sampled respondent such as the ith, V2 refers to variance
of Ŷi. From (2.8.4), it follows that V (Ŷi) = V (Ri)/δ

2. From (2.8.7), we readily have
an expression for estimate of V (Ri). Therefore,

Ê1V2 =
∑

i

V̂ (Ŷi)/n
2 =

∑

i

V̂ (Ri)/n
2δ2 (2.8.12)

Illustrative Example 2.7 As before, we take K = 10 and δ = 0.2. Let our choice
ofM ’s be [expressed in units of thousand rupees]: 1, 2, . . . , 10. We consider a small
population and adopt SRSWOR(N = 20, n = 5). Let the sampled R’s [as per the
respondents’ reporting] be: 3, 7, 4, 8, 5, that is our data. We show the necessary
computations below.
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Example 2.7 : Computational details

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R − values Y − estimates Y 2 − estimates
3 −7 −109
4 −2 −74
5 3 −29
7 13 91
8 18 166

Total 25 45

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

From (2.8.4), we obtain an estimate of the populationmean of Y -values as the sample
mean computed as Rs. 25/5 = 5 thousand. To compute estimated s.e. of the estimate,
we proceed as follows:

From the discussion below (2.8.11), it follows that an estimate of V1E2 is given
by (1/n − 1/N ) times an unbiased estimate of s2Y based on the computations in
Example2.7 above. Since s2Y = [(n − 1)

∑
i Y

2
i − ∑ ∑

inej YiYj]/n(n − 1)], we do
term by term estimation by using relevant square terms and product terms from
Example2.7. This yields:

ŝ2Y = [4 × 45 − 80]/20 = 5 and hence, an unbiased estimate of V1E2 is given by
(1/5 − 1/20) × 5 = 3/4 = 0.75.

For the other term, viz.,E1V2, an unbiased estimate is to be computed from (2.8.12)
in combination with (2.8.7). For the computations, note that Q̄M = 38.5. In (2.8.7),

Term 1[with positive sign]:

V̂ (Ri) = (1 − δ)[R2
i − (1 − δ)Q̄M ] = 0.8[R2

i − 30.8]

Term 2 [with positive sign]:

(1 − δ)[Q̄M − (1 − δ)M̄ 2] = 14.3

Term 3 [with negative sign]

2(1 − δ)M̄ [Ri − (1 − δ)M̄ ] = 8.8[Ri − 4.4]

Example 2.7 : Computational details

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

R − values Term 1 = 0.8[R2i − 30.8] Term 2 = 14.3 Term 3 = 8.8[Ri − 4.4]
3 −17.44 14.3 −12.32
4 −11.84 14.3 −3.52
5 −4.64 14.3 5.28
7 14.56 14.3 22.88
8 26.56 14.3 31.68

Total 7.20 71.5 44.00

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Therefore, unbiased estimate of E1V2 is computed as [7.20 + 71.50 − 44.00]/16 =
34.70. Finally, adding the two components, an unbiased estimate of the variance =
0.75 + 34.70 = 35.45 so that estimated s.e. = √

(35.45) = 5.95.

Remark 2.7 In a similar study, Bose (2015) took up the case of SRSWR(N , n) and
derived expression for the estimate of the population mean and an expression for its
variance. The above study is quite general in nature and applies to any fixed size (n)
sampling design.

Remark 2.8 The BTR technique discussed in the context of sensitive qualitative fea-
ture canbe extended to the case of sensitive quantitative feature—without the assump-
tion of ‘closure’ w.r.t. a given set of known quantities such as [M1,M2, . . . ,MK ].
This has been taken up recently in Nandy and Sinha (2018). We omit the details.

2.9 Concluding Remarks

The topic of RRT is vast and varied in terms of the published literature in the form
of papers, books, and reports. We have simply introduced the basic ideas and initial
methodologies that were suggested in the context of estimation of a population pro-
portion of a sensitive feature of the members of a population. We have also presented
one method w.r.t. quantitative feature. There are similar methodologies dealing with
(i) more than one sensitive qualitative features, (ii) one or more sensitive quantitative
features, and so on.
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Chapter 3
Content Analysis

3.1 Introduction

Some authors in the area of social science research try to distinguish between qualita-
tive research and quantitative research, in terms of the research hypotheses, the nature
of evidences generated or compiled, themethod of processing evidences, and theway
inferences are arrived at. It is felt such a distinction is hardly tenable in the context of
present-day researches. Quantification in some way or the other has become a part
of any study in any domain today. Any comparison involves quantification in most
cases, especially in dealing with more or less similar entities. Apparently, qualitative
aspects of certain entities, like style of writing a document or preparing a message
for wide circulation that may incorporate some images, focus on customer satisfac-
tion in drawing a quality policy or bias in reporting some incident with a significant
fallout on social harmony, etc., can be and are being quantified by identifying some
countable or measurable features. Subsequently, these are subjected to quantitative
analysis and inferences are drawn on the basis of such analyses. Of course, results of
any quantitative analysis or any inference reached on that basis should be interpreted
in the context of the research problem and mostly in a qualitative manner.

In some studies of great importance in social, political, economic or even archaeo-
logical interest, written texts, images drawn, actions observed in videotaped studies,
artifacts preserved in places of historic interest, newspaper reports and similar data
convey some ‘messages’ pertaining to some context, and we need to analyze these
messages to make valid and replicable inferences about the context.

The context could be an issue of some interest and may be associated with some
hypothesis. Content Analysis refers to procedures for assessing the relative extent to
which specified references, attitudes, or themes permeate given messages or docum-
ents. Content Analysis conforms to three basic principles of a scientific method. It is

Objective—in termsof explicit rules being followed to enable different researchers
to obtain the same results from the same documents or messages.

Systematic—through inclusion of only materials which support the researcher’s
ideas by applying some consistent rules.
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Generalizable—in terms of being applicable to situations wherever data of this
type only are available.

The researcher interprets the content to reveal something about the characteristics
of themessage, particularly its bearing on the research problemand the hypothesi(e)s.

Content Analysis enables researchers to swift through large volumes of data with
relative ease in a systematic fashion. It can be a useful technique for allowing us to
discover and describe the focus of individual, group, institutional, or social attention.
It also allows inferences to be made which can be corroborated using other methods
of data collection. In the language of Krippendorff (1980), content analysis research
is motivated by the search for technique to infer from symbolic data what would be
either too costly, no longer possible or too obtrusive by the use of other techniques.

3.2 Uses of Content Analysis

Content Analysis can be a powerful tool for determining authorship of a document.
Styles of different authors vary in respect of paragraph length (number of sentences
or of printed lines in a paragraph, sentence length (number of words in a sentence),
word length (number of letters in a word), use of parenthetic clauses, repetitions of
the same words within a paragraph or even within the same sentence, use of different
forms of narration, etc. The frequency of nouns or function words or some particular
words used in the document can be counted and compared with such frequencies in
similar writings by some known authors to help build a case for the probability of
each person’s authorship of the document, and to apply some criterion likemaximum
likelihood to make a valid inference.

Content Analysis is also useful to examine trends in documents of a particular
type like newspapers, covering, say, news about social evils, or crimes or about
misgovernance, over a period of time. The relative emphasis on correctly (1) reporting
the events as they happened, (2) analyzing the causes that led to the events, and (3)
pointing out the likely fallouts on the society or the economy, can be examined to
detect such trends in journalism.

Content Analysis can also provide an empirical basis for monitoring shifts in
public opinion on issues of social and cultural importance. Thus, mission statements
of different institutions or policy pronouncements of government departments may
be compared with the programmes and projects undertaken.

3.3 Steps in Content Analysis

Content Analysis studies usually involve

* formulation of the research questions;
* selection of communication content;
* developing content categories;
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* finalizing units of analysis;
* preparing a coding schedule, pilot- testing and checking inter-rater reliability;
* analyzing the coded data.

Content analysis relies heavily on coding and categorizing the symbolic data,
ensuring adequate reliability and validity. Such categorical data can subsequently
be analyzed by appropriate statistical tools for making inferences about the context.
Categories must be mutually exclusive and exhaustive.

Two approaches for coding, viz. emergent codingwhere categories are established
following some preliminary examination. Two persons can independently review the
material in the common context and come up with a list of features, which they can
compare and reconcile. Third, they use a consolidated list to be used for coding.
Finally, reliability is examined in terms of the Kappa coefficient, the acceptable
value being 0.8. In a priori coding, categories are established prior to the analysis
based on some theory. Professional colleagues agree on the categories. Revisions
are made as and when necessary and categories are tightened up to the point that
maximizes mutual exclusivity and exhaustivity.

Categorization has to be relevant to the problemor hypothesis under consideration.
One of the critical steps in Content Analysis involves developing a set of explicit
recording instructions to ensure adequate reliability for the coded data.

3.4 Reliability of Coded Data

Reliability can imply stability or intra-rater reliability for the same rater to get the
same results in repeated coding exercises, and reproducibility or inter-rater reliability
to ensure that the same feature is coded in the same category by different raters.

Reliability may be calculated in terms of agreement between raters using Cohen’s
Kappa, lying between 1 to imply perfect reliability and 0 indicating agreement only
through chance, and given by

κ = (PA− PC)/(1− PC)

where PA = proportion of units on which raters agree and PC = proportion of
agreement by chance.

Consider the following data on agreement between 2 raters in categorizing a
number of coding units.

Example 1: Rater 1 versus Rater 2

⎛
⎜⎜⎜⎜⎜⎜⎝

Rater2\Rater1 Academic Emotional Physical Total
Academic 0.42(0.29) 0.10(0.21) 0.05(0.07) 0.57
Emotional 0.07(0.18) 0.25(0.13) 0.03(0.05) 0.35
Physical 0.01(0.04) 0.02(0.03) 0.05(0.01) 0.08

Marginal 0.50 0.37 0.13 1.00

⎞
⎟⎟⎟⎟⎟⎟⎠
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Here PA = 0.72 and PC = 0.43 so that κ = 0.51.
To interpret this value of κ, we refer to Table due to Landis and Koch (1977) based

on personal opinion and not on evidence. These guidelines may be more harmful
than helpful, as the number of categories and of subjects will affect the value of κ.
The value will be higher with fewer categories.

Interpretation of κ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Range of κ Strength of Agreement
< 0 poor

.00−−.20 slight

.21−−.40 fair

.41−−.60 moderate

.61−−.80 substantial
.81−−1.00 almost perfect

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, we can possibly infer a moderate agreement between the two raters in
this example. To judge inter-coder reliability, Chadwick (1984) suggested a coeffi-
cient defined as PA simply.

Holsti (1963) suggested another measure as

R = 2PA/(1+ PA).

Both these measures lying between 0 and 1 can be interpreted in a similar manner.
In the preceding example, these twomeasures have values 0.72 and0.84, respectively.
The fact that these are higher than the value ofκ is due to the absence of any correction
for agreement by chance alone.

Assumptions in the Use of κ

(i) Units of analysis are independent.
(ii) Categories of the nominal scale are independent, mutually exclusive, and

exhaustive.
(iii) Raters are coding independently.

In Scott’s π to measure inter-rater reliability, expected agreement is calculated
differently, using joint proportions. It makes the assumption that raters have the same
distribution of responses across categories, which makes Cohen’s Kappa slightly
more informative. Expected agreement in the example will be found as follows. To
calculate expected agreement in Scott’s pi. We sum marginal totals across raters,
divide by the total number of ratings to obtain joint proportions, then square and
total these. This gives us PC = .53522 + .36022 + .10522 = 0.43 as noted earlier
PA = 0.72. Therefore, κ comes out to be (0.72− 0.43)/(1− 0.43) = 0.29/0.57 =
0.51.

Not necessarily expected, Cohen’s Kappa had exactly the same value in this
example. Cohen’s κ and Scott’s π apply to the case of two raters or judges only.
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Fleiss’s κ proceeds on the same lines as Cohen’s in the case of more than two raters
and is defined as follows:

κ = (Pc − Pe)/(1− Pe).

The denominator gives the degree of agreement that is attainable above chance,
and the numerator gives the degree actually achieved above chance. While κ = 1
indicates complete agreement among raters, κ = 0 if there is no agreement. Fleiss’s
Kappa can be used only with binary or nominal scale ratings, No version is available
for ordered-categorical ratings.

It is to be noted that Cohen’s Kappa assumes that each of two raters rates all
the items (subjects). Fleiss’s Kappa allows different items to be rated by different
individuals like Item 1 is rated by raters A,B, and C while item 2 may be rated by
raters D,E, and F .

Let n raters put N items or subjects in k different categories. Let nij = number
of raters who assigned the i-th item/ subject to the j-th category. Then n = ∑k

j=1 nij.

Let pj = 1/[Nn]∑N
i=1 nij. Also let Pi indicate the extent to which raters agree for the

ith item / subject (i.e., how many rater pairs are in agreement, relative to the number
of all possible rater–rater pairs). Then P = ∑

i Pi/N and Pc = ∑
j p

2
j . In fact, Pc is

akin to Simpson’s Index in analysis of diversity and gives the probability that any
two items or subjects randomly chosen will belong to the same category. In other
words, it measures the agreement between rater pairs.

Pj =
∑

nij(nij − 1)/[n(n− 1)] =
[∑

n2ij − n
]
/[n(n− 1)].

Thus, the Kappa coefficient comes out as κ = [P − Pc]/[1− Pc].
Consider, as an example, a situation wherein 14 psychiatrists asked to look at

ten patients, each gives one of possibly five diagnoses to each patient. The data will
appear as a matrix

Patient Diagnoses by 14 psychiatrists⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Patient 1 2 3 4 5 Pi
1 0 0 0 0 14 1.000
2 0 2 6 4 2 0.253
3 0 0 3 5 6 0.308
4 0 3 9 2 0 0.440
5 2 2 8 1 1 0.330
6 7 7 0 0 0 0.462
7 3 2 6 3 0 0.242
8 2 5 3 2 2 0.176
9 6 5 2 1 0 0.286
10 0 2 2 3 7 0.286

Total 20 28 39 21 32 −
pj 0.143 0.200 0.279 0.150 0.229 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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In this example, P comes out as 3.780/10 = 0.378 and Pc has the value 0.213.
Hence, the value of κ is found to be 0.210. This indicates poor agreement among
the psychiatrists regarding their diagnostic classification of the patients, as can be
seen from the fact except for patients numbered 1, 6, and 9 where the raters perfectly
or mostly agree among themselves, patients 2, 3, 5, or 10 are assigned to different
categories by different raters.

Validity of Inferences from the Data

(i) Units of analysis are independent.
(ii) Categories of the nominal scale are independent, mutually exclusive, and

exhaustive.
(iii) Raters are coding independently.

* use of multiple sources of information;
* involvement of different investigators;
* use of alternative methods of analysis;
* recourse to different theories.

This approach to validation is referred to as triangulation. Search for appropriate
alternatives remains a problem. Triangulation lends credibility to the findings by
incorporating multiple sources of data, multiple methods, multiple investigators, or
alternative theories. To cross-validate the findings of a content analysis of quality
policies of different organizations, we can think of directly asking employees of
the concern to respond to certain questions which truly reflect the intentions and
directions about quality as are spelt out in the quality policy.

Nature of Research Question

Which election issues figured prominently during 1991 elections in the editorials
and letters to the editors of selected dailies and how these dailies differed in terms of
the frequency of appearance and the direction of treatment (favorable, unfavorable,
and neutral) of these issues?

Let us consider the problem to compare private and public manufacturing organi-
zations with similar product profiles in regard to the relative emphasis, they place on
customer satisfaction. We can think of a hypothesis stating that a greater emphasis
is placed in the public sector than in the private sector.

One could have possibly hypothesized in the opposite direction if we were deal-
ing with service organizations. We could also look at variations across sectors of
manufacturing in terms of the output profiles, rather than across ownership patterns
and construct our hypotheses accordingly.

We can consider variations in focus on quality in different stages of production or
on concerns for own people or for corporate social responsibility (CSR) obligations.
Data for any such purpose may arise in different ways and may have different levels
of cost and credibility implications.

A simple unobtrusive way to generate data here would be to just analyze the
quality policy or business policy documents of the selected organizations and not
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to use any questionnaires or interviews or direct observations on practices. It must
be kept in mind, however, that direct observations as are involved in an audit would
have providedmuchmore reliable evidence about emphasis on customer satisfaction,
since there could be gaps between what appear in the policy documents and what are
followed in actual practice.

We need to have representative samples of manufacturing houses for each of the
groups in which we are interested. The policy documents are the sampling units and
the words or phrases or sentences which relate directly or indirectly to ‘customer
satisfaction’ or the issue of interest constitute the coding units. We can develop
certain categories into which words or phrases in the policy document bearing on,
say, customer satisfaction directly or implicitly can be placed in a mutually exclusive
and exhaustive manner by a reader/ rater, e.g., strong, moderate, not explicitly stated.

We have to be careful in comprehending the implication of a statement like ‘we
will regard every complaint as a failure,’ which possibly implies a strong emphasis on
customer satisfaction. The important point to note is the fact that Content Analysis in
this context is not just in terms of frequency counts, e.g., ‘howmany times the phrase
customer satisfaction appears in the policy statement’ to build up a distribution of
this number across units, separately for each of the groups we like to distinguish.
Thereafter, such distributions could be compared, either in terms of summary mea-
sures or using the principle of dominance or applying suitable tests of homogeneity.
In this approach, data would be numerical and we need not involve more than one
rater or reader. However, if we look into the implications of various statements con-
tained in the quality policy bearing on customer satisfaction and then require to put
any unit into one of several categories-decided upon in some way-different raters or
judges would possibly come up with different frequencies (of units) in each of the
categories. In such cases, we should first examine the extent of agreement among the
raters and, once a reasonable extent of agreement has been found to exist, we can
proceed with the average number in each of the categories for further analysis. Thus,
we could eventually land up with two such distributions, one for private and the other
for public enterprises and can apply the homogeneity test using the Brandt–Snedecor
formula for chi-square.

Suppose we want to judge variations in quality management systems using pre-
fixed categories like compliance-oriented, improvement-oriented, and excellence-
oriented, again from the policy documents. The entire policy documents become the
coding units and the rater has to carefully examine the document as a whole in order
to put a document in a given category.

Once the categories are finalized and the units, viz. the policy documents in terms
of relevant words or phrases or sentences have been coded, separately for each of
the groups to be compared, by two or more raters, we proceed to check inter-rater
agreement and, if found adequate, we can combine the distributions of units across
the classes as assigned by the different raters and proceed with the distribution on the
basis of average frequencies (of course avoiding fractions).We thus get the frequency
distributions for the different groups and apply appropriate statistical tools to detect
variations and decide on the hypothesis or hypotheses we started with. Thus, working
with a 3× 2 table with ownership categories along columns and emphasis categories
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along rows, we can apply the usual chi-square test for independence or no association
between degree of emphasis and ownership pattern.

We can also work with several columns for sectors of manufacturing and examine
possible differences across sectors. Essentially, Content Analysis will generate cat-
egorical data. In some cases, these are numerical or can be converted into numbers.
Inferences based on such analysis should be validated (triangulated) by analyzing
data on customer complaints or on product image or on complaint redressal, etc., col-
lected from documents or from direct interviews of customers or potential customers
or from consumers’ fora and even product or manufacturer rating agencies.

3.5 Limitations of Content Analysis

It should be noted that content analysis

• does not tell us about causal connections between variables under study
• cannot explain why certain trends emerge.

It is primarily used to supplement the findings of mainstream research designs,
such as survey research, where inferences are based on what Content Analysis even-
tually yields in terms of categorical data in situations which do not allow direct
responses or evidences to be sought. However, Content Analysis can also be used
in designing survey questionnaires by involving several experts or referees to go
through the draft questionnaire or a part of the questionnaire to ascertain how much
relevant or revealing the survey instrument id in relation to the research question
to be addressed. Revision of the questionnaire may be suggested by the extent of
agreement among the experts.

3.6 Concluding Remarks

When used properly, content analysis id a powerful data reduction technique. Its
major benefit arises from the fact that it is a systematic and replicable technique
for compressing many words of text into fewer categories based on explicit rules of
coding. It has an attractive feature of being unobtrusive and being useful in

dealing with large volumes of data. The technique of content analysis goes far
beyond simple counts of word frequency. However, there could be two significant
flaws in content analysis that destroy its utility, viz. faulty definitions of categories
and non-mutually exclusive and exhaustive categories.
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Chapter 4
Scaling Techniques

4.1 Introduction

A test is generically an exercise to assess the performance of an individual (or even
a group) on a task or of the aptitude or ability to perform or the attitude toward
a task or a situation. Tests of intelligence or personality or attentiveness or similar
other traits define a wide range of assessment or identification exercises. Usually, any
such test administered on an individual will result in a measure, generally a number,
which is referred to as a score. Most often, the test exercise involves an instrument
like a question paper in academic examination or a questionnaire about self or about
the environment. Such an instrument will again have some distinguishable items or
components to take care of different aspects of the trait being identified or assessed.

The length of a test in terms of the number of items or components, the nature
of administration, viz. administered individually or to a group, the manner in which
responses to test items will be compared with some ‘correct’ or ‘desired’ or ‘norma-
tive’ responses, and such other features of a test will generally differ from one test
to another.

And it is quite expected that the range of scores within which the score of any
individual test taker will lie varies from test to test. The same test may be repeatedly
applied to many different groups of individuals who may possess some similarity
in respect of, say, age or gender or socioeconomic background or educational levels
etc.

A raw score is the total number of score points a test taker obtains by answering
questions correctly on a test. A percent correct score represents the percentage of
questions a testee answered correctly on a test. For example, if the raw score was 35
for 35 out of 50 questions in a test correctly answered, the percent correct score will
be 70. This score can be taken as an adjusted raw score to account for differences in
lengths of different tests.

To achieve comparability, standardized testing programs report scaled scores.
The scaled scores are obtained by a linear or nonlinear transform of the raw scores.
Scaled scores have a common scale to account for differences in difficulty levels
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across different forms as also across different groups of test takers placed in different
contexts. Equating is the process by which the raw scores on a new form are adjusted
to account for differences in form difficulty from a base or reference form. The utility
of scaled scores comes from allowing for meaningful interpretations and, at the same
time, minimizing misinterpretations and inappropriate inferences. Scores arise when
we like to compare participants in some activity like sports and games, or music
and dance, or elocution and drawing, debate or discussion. In any such case, we
use some method of scoring somewhat specific to the context that takes care of the
demographic features of the participants, the objectives of event, the idiosyncrasies of
the evaluator(s), and extent of discrimination among the participants intended. And
scaling of the raw scores as assigned to different participants lacks comparability
across events, across occasions, across participant groups, and across evaluation
agencies.

Apart from raw scores in educational and psychological tests, we come across
problems of comparing products or similar objects with one or more features which
are presented to some judges for assessing the relative differences among the different
objects. Often, the judges will be required to rank the products, say n in number, from
1 for the best to n for the worst. It is possible to have tied ranks when some objects
appear to be indistinguishable in respect of the feature(s) to the judges. Ranking a
large or evenmoderately large number of objects usually becomes difficult and invites
ties. As one alternative, we present to each judge each of the possible pairs of objects
and ask the judge to prefer one in the pair say ‘i’ to the other, say ‘j’. Subsequently,
we proceed with the proportion of judges who prefer object k to object l within each
possible object pair (k, l). Our intention is to reveal relative distances among the
objects by associating with each object a scale value which helps us to visualize the
objects as points on a straight line. We can involve several features of each product,
several judges to scale these and present the object pairs on several occasions.

As an extension of this activity, known as product scaling, we can think of a visual
representation of the relative distances among the objects by representing each object
as a point in a plane or, at best, in a three-dimensional space. This activity is known
as multi-dimensional scaling.

Section One deals with Scaling of Scores, while scaling of categorical responses
obtained in a variety of socioeconomic surveys has been taken up in Section Two and
Section Three is devoted to Product Scaling or Scaling of Concrete Entities involving
directly the roles of judges who primarily assess the relative merit or strength of an
entity relative to others in a group.

4.2 Scaling of Test Scores

The main defect of the prevalent system of ranking in scholastic tests consists of the
adding of the raw scores of an individual on several tests to get his composite or total
score and ranking all individuals on the basis of the total score. This is not a valid
procedure since the same raw score x on different tests may involve different degrees
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of ability and hence may not be equivalent in different tests. Hence, the raw scores
have to be scaled under some assumption regarding the distribution of the trait which
the test is measuring.

4.2.1 Percentile Scaling

Here we assume that the distribution of the trait under consideration is rectangular,
under which we shall have percentile differences equal throughout the scale. To
determine the scale value corresponding to a score x on a test, we have to find the
percentile position of an individual with score x, i.e., the percentage of individuals in
the group having a score equal to or less than x, which can be easily obtained from
the score distribution assuming that ‘score is a continuous variable. Regardless of the
form of the original raw score distribution, the distribution of percentile scores will
be rectangular. However, the distribution of raw scores is rarely rectangular, so that
the basic assumption underlying the percentile scaling may not always be realistic.
Thus, while using this scaling method, one should be aware of its limitations.

4.2.2 Z-Scaling or σ-Scaling

Here we assume that whatever differences that may exist in the forms of the raw
score distributions may be attributed to chance or to the limitations of the test. In
fact, the distributions of the traits under consideration are assumed to differ only in
mean and s.d. Hence, the scores on different tests should be expressed in terms of
the scores in a hypothetical distribution of the same form as the trait distribution
with some arbitrarily chosen mean and s.d. The transformed scores are called linear
derived scores. In particular, if the mean is arbitrarily taken to be zero and the s.d.
to be unity, the scores are called standard scores or ?-scores or z-scores. To avoid
negative standard scores, in linear derived scores the mean is generally taken to be
50 and the s.d. to be 10. If a particular test has raw score mean and s.d. equal to μ
and σ, respectively, then the linear derived score (w) corresponding to a raw score x
on that test is given by (x − μ)/σ = (w − 50)/10, or, w = 50 + 10((x − μ)/σ) =
50 + 10z, where w is the linear derived score with mean 50 and s.d. 10 and z is the
standard score.

This linear transformation changes only the mean and the s.d., while retaining the
form of the original distribution.

4.2.3 T-Scaling

In this case, we assume that the trait distribution is normal. The raw score distribution
may deviate from normality, but the deviations from normality are attributed to
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chance or to limitations of the tests. The mean and s.d. of the normal distribution of
the trait may be arbitrarily taken to be 50 and 10, respectively. To get the scaled score
corresponding to a raw score x, first we find, as in percentile scaling, the percentile
position (P) of an individual with score x and the find the point (T) on a normal
distribution with mean 50 and s.d. 10, below which the area is P/100. This is given
by Tau((T − 50)/10) = P/100, where Tau(u) is the area under the curve of the
standard normal variable from -∞ to u.

The scaled score obtained by this process is called T-score in memory of the
psychologists Terman and Thorndyke. The scale is due to McCall.

The scaled score obtained by this process is called T -score in memory of the
psychologists Terman and Thorndyke. The scale is due to McCall.

Normalized scores are also expressed as stanine (standard nine) scores. The sta-
nine scale takes nine values from 1 to 9, with mean 5 and s.d. 2. When a distribution
is transformed to a stanine scale, the frequencies are distributed as follows:

STANINE DISTRIBUTION(
Stanine Score 1 2 3 4 5 6 7 8 9

Percentage on each score (rounded) 4 7 12 17 20 17 12 7 4

)

A transformation is nonlinear if it changes the formof the distribution.Normalized
scores and percentile scores are merely special cases of nonlinear transformation of
the raw scores. For nonlinear transformation, any form of distributionmay be chosen.

4.2.4 Method of Equivalent Scores

Here we do not make any assumption about the distribution of the trait under con-
sideration. The appropriate trait distribution is obtained by graduating the raw score
distribution by an appropriate Pearsonian curve.

Let x and y be the scores on two tests, having probability density functions f and
h, respectively, obtained by some process of graduation. Now, two scores xi and yi ,
on the two tests, are to be considered equivalent, in the sense that they bring into
play equal amounts of the trait, if and only if

∫ xi

−∞
f (u)du =

∫ yi

−∞
h(u)du.

For practical convenience, an equivalence curve may be obtained by computing
a number of pairs of equivalent scores, (xi , yi ) and fitting to the corresponding set
of points an appropriate curve, say y = g(x).

Equivalent scores can also be obtained from the score distributions for x and y
without going into the process of graduation. First, two ogives are drawn on the same
graph paper. Two scores xi and yi with the same relative cumulative frequency are
then regarded as equivalent. For the purpose of comparison or combination, the raw
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scores on different tests may be converted into equivalent scores on a standard test.
In this method, the form of the distribution of equivalent (transformed) scores is the
same as that of the standard test. If, however, the standard test score has a normal
distribution, the method reduces to normalized scaling.

Example 4.1 The raw score distributions for Vernacular and English for a group of
500 students are given below. One of two students got 80 in Vernacular and 40 in
English, while the other got 60 in both. Compare their performances by (i) percentile
scaling, (ii) linear derived scores, (iii) T -scaling and equivalent scores ogive method.

First, we have to remember that a score of 80 is to be considered as an interval
from 79.5 to 80.5 and similarly for the other scores.

To obtain the percentile positions, we obtain the cumulative frequencies (less than
type) for both Vernacular and English. They are shown in Table5.3.

Hence, the percentile positions corresponding to 80.5 and 60.5 in Vernacular are
given by

P80.5(Vern) = [(497 + 0.6)/500] × 100 = 99.52;

P60.5(Vern) = [(436 + 7.2)/500] × 100 = 88.64.

Similarly, for English,

P.5(Vern) = [(497 + 0.6)/500] × 100 = 99.52;

P60.5(Vern) = [(436 + 7.2)/500] × 100 = 88.64.

Distributions of Scores in Vernacular and English of a Group of 500 Students

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Score V ernacular English
−− Frequency Frequency
0 − 4 − 3
5 − 9 − 6

10 − 14 − 12
15 − 19 6 23
20 − 24 7 35
25 − 29 18 45
30 − 34 34 74
35 − 39 56 72
40 − 44 84 78
45 − 49 74 53
50 − 54 104 46
55 − 59 53 29
60 − 64 36 18
65 − 69 16 5
70 − 74 9 1
75 − 79 0 −
80 − 84 3 −

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Cumulative Distributions of Scores in Vernacular and English of a Group of 500 Students

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Score V ernacular English
−− Cumulative Frequency Cumulative Frequency
0 − 4 − 3
5 − 9 − 9

10 − 14 − 21
15 − 19 6 44
20 − 24 13 79
25 − 29 31 124
30 − 34 65 198
35 − 39 121 270
40 − 44 205 348
45 − 49 279 401
50 − 54 383 447
55 − 59 436 476
60 − 64 472 494
65 − 69 488 499
70 − 74 497 500
75 − 79 497 500
80 − 84 500 500

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence, the total scaled score for Student 1, getting 80 in Vernacular and 40 in
English, is by percentile scaling 99.52 + 57.12 = 156.64 and that of Student 2,
getting 60 in both Vernacular and English, is 88.64 + 95.92 = 184.56.

Thus, we see that the relative performances of the two students are quite different
although their total raw scores are equal.

For linear derived scores with mean 50 and s.d. 10, we require the means and
s.d.’s of scores in the two subjects.

Hence, the w scores are given by

T 80(Vern.) = 50 + [(80 − 47.09)/11.32] × 10 = 79.07,

T 60(Vern.) = 50 + [(60 − 47.09)/11.32] × 10 = 61.40,

T 40(Eng.) = 50 + [(40 − 37.87)/13.10] × 10 = 51.63,

and

T 60(Eng.) = 50 + [(60 − 37.87)/13.10] × 10 = 66.89.

As such, the total w-score of Student 1 is 79.07 + 51.63 = 130.70, and that of
Student 2 is 61.40 + 66.89 = 128.29. Linear derived scores, therefore, show that
Student 1 is slightly superior to Student 2.

Now, for T -scaling, percentile positions have to be converted into T -scores. We
have, for Vernacular,

T 80(Vern.) = 50 + τ.9952 × 10 = 75.90, T 60(Vern.) = 50 + τ.8864 × 10 = 62.08.

Next, for English,

T 40(Eng.) = 50 + τ.5712 × 10 = 51.79, T 60(Eng.) = 50 + τ.9952 × 10 = 67.41.
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Hence, the total T -score of Student 1 is 75.90 + 51.79 = 127.69, and the total
T -score of Student 2 is 62.08 + 67.41 = 129.49.

Thus T -scaling shows that Student 2 is slightly superior to Student 1.

Determination of Equivalent Scores in English and Vernacular from the Ogives

In the equivalent scores method, let us take Vernacular as the standard. From the
above figure, we find that a score of 40 in English is equivalent to a score of 49.8 in
Vernacular and a score of 60 in English is equivalent to a score of 66.9 in Vernacular.

Hence, the total score of Student 1 in terms of Vernacular score is 80 + 49.8 =
129.8 and that of Student 2 is 60 + 66.9 = 126.9.

Thus, this method again shows that Student 1 is slightly superior to Student 2.

4.3 Scaling of Categorical Responses

Attributes like perception, attitude, honesty, sincerity are unobserved latent variables.
Response of an individual to a statement or a question relating to such an attribute is
generally recorded as belonging to one of several prefixed categories. To a question
on how did one feel about some program on Research Methodology, a respondent
can state Fair or Good or Very Good or Excellent. (One may add a fifth category, viz.
nothing particular or undecided.). Given a statement like My colleagues/ peers give
me full cooperation in discharging my duties in an organizational climate survey,
possible reactions could be completely disagree, disagree, cannot comment, agree,
and completely agree.

To proceed further to analyze the ordinal data, we need to assign scale values to
each category, assuming a certain probability distribution of the underlying latent
variable over a support [a, b]. Usually, we have an odd number (5 or 7) of categories
and we assume a normal distribution for the underlying trait or latent variable. We
can have any number of categories and can assume any other trait distribution. The
upper-class boundaries for the latent variable are, say a = x1, x2, . . . , xk = b. The
task is to estimate these unknown boundaries in terms of the observed frequencies of
responses in the corresponding categories and then finding midpoints of the classes.

4.3.1 Estimation of Boundaries

Given frequencies f1, f2, . . . , fk in the k categories with cumulative frequencies
F1, F2, . . . , Fk , respectively, we equate Fi to �(xi) to get xi from a table of �-
values (left tail areas under the assumed normal trait distribution with mean 0 and
s.d. 1). It can be shown that x’s thus determined are reasonably good estimates of
the unknown boundary points for the prefixed number of categories and, hence, of
intervals for the trait or latent variable. Intervals for the trait are replaced by means
of the trait distribution truncated between the boundaries for the intervals.
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Assuming normality, the truncated mean for the class (xi−1, xi ) is given by

si = (φ(xi−1) − φ(xi )/(�(xi ) − �(xi−1).

The first class for the normal trait distribution is (−∞, x1) while the last class is
(xk−1,∞) with

�(−∞) = 0,�(∞) = 1,φ(−∞) = o = φ(∞).

4.3.2 Finding Scale Values

Sometimes, scale values are taken as equidistant integers like 1, 2, 3, 4, 5 or 2, 4, 6, 8.
These then become data- andmodel-invariant.Wemust note that trait intervals corre-
sponding to different response categories are not generally equal. In Likert’s scaling,
the scale values are data-dependent and will depend on the particular set of observed
frequencies as also on the trait distribution assumed.

Example 4.2 Quality of service offered at a newly opened customer service center
judged by 60 visitors is shown below.

Cumulative Distributions of Scores in Vernacular and English of a Group of 500 Students

⎛
⎜⎜⎜⎜⎜⎝

Grade Frequency Cumulative Frequency
Poor 3 3
Fair 14 17
Good 26 43

VeryGood 13 56
Excellent 4 60

⎞
⎟⎟⎟⎟⎟⎠

Assuming an N (0, 1) distribution for the underlying trait, viz. perceived quality,
upper-class boundaries become−1.65,−0.58, 0.55, 1.48 and∞. Thus, scale values
are −2.06,−1.04, 0.01, 1.02 and 1.90. If we take an arbitrary mean of 3 and an s.d.
1, these values become 0.94, 1.96, 3.01, 4.02, and 3.90 and are not equidistant.

In a situation, where the trait can vary over the range 0 to 5 and we can
justifiably assume a uniform distribution of the trait, the scale values will be
0.25, 0.83, 2.50, 3.45, and 4.67, respectively.

4.4 Use of U-Shaped Distributions

Bose and Sen (1958) noted that in some cases respondents tend to exhibit extreme
positions and there are only few responses in the middle (undecided or neutral)
category. In such cases, they have advocated the use of some U -shaped distribution
toworkout scale values for the categories.While thePearsoneanT ype I I distribution
with the probability density function
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f (x) = y0(1 − x2/a2)m,−a < x < a;−1 < m < 1

was a candidate, it is not possible to guess the value ofm from the observed data. Bose
and Sen suggested that if from a uniform distribution over the range −λ < x < λ
we take out the standard normal distribution, the resultant density

f (x) = [H − 1/
√

(2π)exp(−x2/2)],−λ < x < λ;= 0, otherwise

will correspond to a U -shaped distribution. To make the density nonnegative, the
constant H has to be greater than 1/

√
(2π), a value attained when λ = 2.49. In fact,

λ can vary between 0 and 2.49. They took λ = 2.054 with H = 0.477 to ensure a
moderate curvature of the distribution that will have the density function

f (x) = 0.477 − 1/
√

(2π)exp(−x2/2),−2.054 < x < 2.054.

Starting with five categories for the response, they give expressions for the five
conditional means in terms of entries in tables prepared by them. They considered
Krishnan’s data on study habits consisting of 39 questions in a survey covering a
batch of 23 students. To each question, one of the following 5 ratings was attached
by each student (though a few of the students did not attempt a few of the items):

Rating

5 if the statement is always true of you;
4 if the statement is most often true of you;
3 if the statement is often true of you;
2 if the statement is sometimes true of you;
1 if the statement is never true of you.

In this case, the statements were such that extreme types of ratings are quite likely
and the underlying distribution of the trait (rating) can be reasonably assumed to
be U -shaped. To avoid negative scale values, a formula like Y = 50 + 24.39m was
adopted, wherem is the mean for a doubly truncated part of the underlyingU -shaped
trait distribution. These scaled scores for the different items could be added up to
yield the total score of a student. By examining the total scores, we can study the
attitude of the students against the set of questions.

4.5 Product Scaling

Product features like appearance or performance (judged in terms of user-friendliness
or ease ofmaintenance or clarity of images or of sound, etc.) may be rated by different
users or viewers differently, and we may be interested to work out some scale values
for different brands or versions of a product which will facilitate decisions regarding
a choice among them. Several different situations may arise. Handwriting, drawing,
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music, etc., are well-known products whose quality cannot be directly measured. As
such ranking of several such products (not to speak of placing their intrinsicmerits on
a cardinal scale) becomes difficult. The method of paired comparisons introduced by
Thurstone (1927) and later extended by Mosteller (1951), Bradley and Terry (1952)
Gibson (1953), Gibson and Burros (1994), etc., provides a way out.

Themethod involves a number of judges or raters—assumed equally competent—
to each of whom all possible pairs of products are presented and preferences of these
judges for one of the two members in each pair are noted. These preferences are then
incorporated in a theoretical framework to develop sale values which can be attached
to the products under study.

In scaling, a number of productswhich do not admit of copies or prototypes but can
be presented onmore than one occasions or a set of products where different copies or
prototypes of the sameproduct canbe consideredondifferent occasions, it is desirable
to ensure that scaling takes due account of variations in judgment (preferences) from
occasion to occasion, from one prototype to another besides variations among judges
so that differences in scale values reflect true differences in quality or ability. The
possible situations likely to arise are

(1) Several pairs of prototypes corresponding to the product pair are presented to
each of several judges on different occasions, a separate pair being considered
on each occasion. In particular, one prototype pair corresponding to one product
pair can be considered by each of the judges on one occasion only.

(2) The same pair of prototypes corresponding to a product pair is presented on
several occasions to each of several judges, or in particular to one judge only.

(3) Each pair of products is presented to each of several judges on each of several
occasions. This is the case when prototypes of a product cannot be conceived or
used.

Mukerjee (1980) provides complete derivations of scale separations among the prod-
ucts in each of these three cases, under appropriate assumptions. With a suitable
choice of origin and scale, these separations can yield the absolute scale values for
the different products.

We consider the third situation first. We assume that the n products are inherently
different among themselves w.r.t. the feature or trait assessed and that the m judges
are competent to bring out such differences. Thus, there will be no ties in the ranks
assigned by any judge to the n products. We also assume that each product has a
true value for the trait, although such a value cannot and will not be assigned to any
product by any judge. Each of the n(n − 1)/2 pairs of products will be presented
to each judge on each of p occasions. On each occasion, a judge will be required
to prefer one product in a pair to the other. Let pik. j be the proportion of judges
preferring product i to product k on the j th occasion. Thus, p−

ik = ∑
j pik. j is the

average proportion. Let e(l)
ik. j be the error in judgment committed by judge l on the

j th occasion when the product pair (i, k) is presented to him. We assume that these
errors are jointly normally distributed with
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Var(e(l)
ik. j ) = δ2ik f or all j and l and Cov(e(l)

ik. j , e
(t)
pq.s) = 0,

if the set l, t, j, s contains at least three distinct integers. For any occasion, let us
define the indicator variable Y (l)

ik. j = 1 if product i is preferred to product k by the lst
judge; = 0 otherwise.

Observed values of these indicator variables form the basis of themethod of paired
comparisons. We note that pik = 1/p

∑
Yik. j .

Evidently, Y (l)
ik. j = 1 if and only if μi + e(l)

ik. j > μk + e(l)
ki. j so that

EY (l)
ik. j = Prob[μk + e(l)

ki. j − μi − e(l)
ik. j < 0] = Prob[S(l)

ik. j<0], say.

Under the assumptions made, S(l)
ik. j is univariate normal with mean μi − μk and

variance 2δ2ik . Hence,

E[p−
ik] = �[(√2δik)

−1(μi − μk)]

Applying the method of moments for estimation, we obtain the estimated scale
separation as

μi − μk = √
2δik�

−1(p−
ik)

We can reasonably assume δik = δ for all i and k.
Taking

√
2δ as the unit of separation, the scale separation between product

i and product k becomes ∩φ−1(pik). We can subsequently estimate μi − μ− =
1/n

∑
k �=i (μi − μk). If we take the mean μ− as the origin, we can work out scale

values for the different products.
Let us consider the following example.

Example 4.3 Suppose 200 individuals were asked about their preferences for four
different types of music.

⎛
⎜⎜⎜⎝

Music T ype 1 2 3 4
Music T ype 1 .500 .770 .878 .892

2 .230 .500 .743 .845
3 .122 .257 .500 .797
4 .108 .155 .203 .500

⎞
⎟⎟⎟⎠

Under the usual assumption of normality of the distribution of difference in judg-
ments with means Si − Sj and s.d. σi− j , and with the constant σi− j taken as the unit
of the scale, we get the matric of scale separations Si − Sj as follows

⎛
⎜⎜⎜⎜⎜⎝

Music T ype 1 2 3 4
Music T ype 1 0 .739 1.165 1.237

2 −.739 0 .653 1.015
3 −1.165 −.653 0 .831
4 −1.237 −1.015 −.831 0

Column Mean −.785 −.232 .247 .771

⎞
⎟⎟⎟⎟⎟⎠
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With the origin at S̄, the mean scale value, the column means give us the corre-
sponding scale values for the four music types. With origin at S1, on the other hand,
we get the following scale values:

(
Music T ype 1 2 3 4
Scale Value 0 .553 1.032 1.556

)
.

4.6 Other Unidimensional Scaling Methods

In the class of unidimensional scaling, the one that is worth mentioning besides
Likert’s and Thurstone’s is Guttman scaling. We should remember that in any such
scaling exercise, we are assigning a scale value to each individual who responds to an
item in one of several categories or considers the preferences of some judges between
members of each individual pair in respect of some property or trait or even take into
account responses by an individual to a series of ordered items, ordered according
to difficulty level or maturity level or some such trait. Guttman scaling applies to the
last situation where a cumulative score or scale value is assigned to each respondent
to several ordered items with binary responses. Guttman scaling developed by Louis
Guttman (1944, 1950) as part of his classic work American Soldiers, this is a multi-
item scaling that provides a cumulative score to each individual responding to a
set of questions with binary response. The method takes into account the position
of each question or item with regard to difficulty or some similar aspect also. Let
us consider the example discussed in Abedi (2010) in which each of five children
indicated whether he/she has mastered a topic in Mathematics with the response 1
or not with a response.

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Problems
Child Counting Addition Subtraction Multiplication Division

1 1 0 0 0 0
2 1 1 0 0 0
3 1 1 1 0 0
4 1 1 1 1 0
5 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In such a well-structured pattern that is expected in a logical situation, we can rep-
resent the data by the following order:
Counting Child 1; Addition Child 2; Subtraction Child 3;
Multiplication Child 4; and Division Child 5.
The order can be transformed into a set of equispaced numbers like
Child 1–2; Child 2–4; Child 3–6;
Child 4–8; and Child 5–10.

The score of a child (row) is proportional to the number of nonzero entries. This
is the case of a perfect Guttman scale. An imperfect scale could relate to a situation
where some child puts 1 for addition but 0 for counting or puts 1 for multiplication
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but 0 for subtraction. Deviations from the ideal scale could be considered as errors
and the coefficient of reproducibility of the scale value assigned to an individual
could be obtained as

Reproducibility = 1 − (actual number of errors)/(number of possible errors)

Considering opinions or attitudes or desires and similar traits, the items in a test
have to be so framed in a logical sequence that a positive answer to anyone would
imply a positive answer to all the previous items. A respondent would be asked
to respond to some item in the middle and, depending on whether the response is
positive or negative, responses to other items would be sought. Otherwise, with items
properly graded, the respondent would be asked to start with the easiest or the most
basic question and wherever he/ she stops answering positively, we can assign a
cumulative score to the respondent, assuming perfect reproducibility. This saves a
lot of time and effort in an opinion survey or structured interview. The score assigned
to a respondent would, of course, depend on numbers that will be associated with
the level of each question, levels being usually equidistant. Rasch model is a one-
parameter model in the family of item response latent trait models which produces
an interval scale that determines item difficulty as well as person measures of the
trait, considering a set of carefully selected survey items The scale is then used to
show person measure. The scale units are logits (log odds ratio units). Usually, 4 to
8 related items are considered. For convenience in understanding, logit values are
transformed usually to a 10-point scale by using the transformation

Measure (new)= 10× [oldmeasure−minimum]/[maximum−minimum]where
the old measure is the logit and the new measure has the 10-point scale and the
maximum and minimum relate to item difficulty of any item. In the Rasch model,
we assume that the probability of correct response to an item as a logistic function
of the difference between the person (proficiency or ability) parameter and the item
(difficulty or maturity level) parameter. Let the random variable Xni stand for the
response (1 for a correct or positive response and 0 for an incorrect or a negative
response) of individual n in item i . We assume that

Prob(Xni = 1) = exp(βn − δi )/[1 + exp(βn − δi )]

where βn is the person measure (of ability or positivity of trait or proficiency) of
person n and δi stands for difficulty of item i . For the same person, score difference
on two items with difficulty levels δ1 and δ2 will depend only on δ1 − δ2. If we
denote the total score of a person n ?? two items by rn , then the item parameters can
be estimated from the conditional log odds ratio for [Xni = 1|rn = 1].

Parameters in the logistic model are derived using the conditional maximum
likelihood method. We eventually get a person score as also an item score which can
be shown as locations on a continuous latent variable. It has been argued that the total
score for an individual in all the items has a nonlinear relationwith the person’s ability
and that is why the logistic function has been used. Among the shortcomings of the
Rasch scaling, one relates to the assumption that the different items have the same
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discriminatory ability. When polytomous responses are considered, Rasch scaling
has some semblance with Likert scaling. And in case of dichotomous responses, this
is somewhat analogous to Guttman scaling.

4.7 Concluding Remarks

Nominal data may give rise to categories, e.g., religious or linguistic or similar
groups. Scaling does not apply to such categorical data. Ranks can be assigned in
the case of ordinal data, and these are equidistant. Equal differences in ranks may
not imply equal differences in the underlying trait. Scale values may be equidistant
only when all the class frequencies are equal and the underlying trait follows a
rectangular distribution. Scaling of products (like art objects or even multifaceted
consumer goods) presented in pairs to a group of judges is based on a matrix where
elements are proportions of judges preferring one product to the other, considering
all possible pairs. Multi-dimensional scaling is a useful tool to visualize relative
positions of products.
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Chapter 5
Data Integration Techniques

5.1 Introduction

We undertake a study of ranking a given set of competing and alternative ‘locations,’
using different methods of data integration. Among other aggregating techniques,
TOPSIS Method [TM]—a specific Multiple Criteria Decision Making [MCDM]
Algorithmic Tool/Technique—will be discussed at length. Thismethod is thoroughly
discussed in the reference papers listed at the end. Another less popular ELECTRE
METHOD is also discussed in the book [2]. It is relatively unexplored in the area
of what is known as ‘Data Integration Techniques.’ There are very few published
papers. We will be discussing computational details underlying this technique.

In Sect. 5.2, we start with a brief description of different data integration tools/
techniques. In Sect. 5.3, the computational algorithm underlying the TM is discussed
in a theoretical framework and this we do by borrowing the standard notations. This
is geared toward providing maximum comfort to the readers—at least to those who
are familiar with application areas. In Sect. 5.4, we work on a data set for illustrating
the computations. It is only natural that we, as statisticians, provide further insights
into the intricacies of application of TM in real data. We close the chapter with some
remarks in Sect. 5.4.

5.2 Elementary Methods for Data Integration1

Assume there are ‘m’ locations and there are ‘n’ sources wherefrom ‘meaningful
inputs’ emerge into each of these locations. Each ‘input’ is quantified and measured

1This section draws material from the author’s co-published paper: ‘Data Integration Techniques,’
published in International Journal of Tropical Agriculture [IJTA], Serial Publications; ISSN: 0254
- 8755, Vol. 33, No. 2, April–June 2015, pp. 1339–1344. Permission for re-use was obtained from
co-author, Dr. Mamunur Rashid, as well as from the Publisher.

© Springer Nature Singapore Pte Ltd. 2018
S. P. Mukherjee et al., Statistical Methods in Social Science Research,
https://doi.org/10.1007/978-981-13-2146-7_5
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by a positive ‘score’ in the same scale—across all sources and locations. Assume that
smaller the score, better is the ‘rank’ of the location. The problem is to ‘integrate’
the scores from all sources for each of the locations and provide an overall ranking
of the locations. This is popularly known as ‘data integration.’

We denote by X = ((xij)) the positive-valued score matrix of order m × n—
representing the locations as rows and the sources as the columns of the data matrix.
In order that a location is adjudged the best with respect to a specific source, it is
tacitly assumed that the score for this location has to be the least among all others
in the list [of locations] with respect to this specific source. The objective of the
study is to arrive at an ‘overall’ ranking of the locations, by taking into account their
‘performance’ across all the sources. It may so happen that the natural choice of one
or more sources lend themselves to ‘maximum-the-best’ criterion. In such a case,
one suggestion is to change the scores for all locations [across that column of the
X-matrix] by taking their reciprocals. In fine, one has to ensure that all the scores for
each source have the same interpretation in terms of ‘min. - to - max.’ going hand in
hand with ‘best to worst.’ At times, theX-matrix is also termed as ‘decision matrix.’

It is clear that for one single source of evaluation, the ranking of locations is
trivial. Also as and when all the sources exhibit same relative positions of different
sources, the solution is easy to arrive at. Non-trivial situations arise when there are
‘wave-like’ patterns in the data, and this is most expected scenario in practice with
real data.

One natural and simple-minded approach has been to work out the average score
for each location—by averaging the scores across all the sources. That means, we
simply compute the row averages in theX-matrix of scores and use them for ranking
of the locations. There are obvious limitations to this approach since it does not take
into account the variations among the scores [of different locations] under each eval-
uation criterion i.e., source. It deals with one location at a time. Apart from this, the
point to be noted is that while we are working out the average score, we are assuming
that all the sources are equally important and hence they possess the same weights.
This has been a point of concern to the data analysts, and they have worked out a
solution to this problem. Naturally, we may call upon ‘subject experts’ and utilize
their knowledge in ascertaining relative weights of the different sources. Failing to
have access to such experts’ inputs, data-driven techniques have been suggested in
the literature. One such technique is based on ‘Shannon EntropyMeasure.’ There are
two other data-driven techniques for ascertaining source weights in such contexts.

We will discuss and apply two of these techniques for evaluation of weights of
different sources. Once the weights are determined, the formulae for applying the
weights are the same to arrive at the individual rankings of the locations.

Before we proceed further, we may also mention in passing the following:
Since the main purpose of this exercise is to find overall ranks of the locations, it

has been suggested that the Data Matrix X = ((xi j )) may as well be converted into a
‘Matrix of Ranks’—by working out the ranks of the locations for each source. That
would mean—observations are to be ranked column-wise. Once this is done, usual
‘weighted average’ technique may be employed for further analysis.

We will not pursue these discussions/computations further.
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5.3 Topsis Method: Computational Algorithm
in a Theoretical Framework and Related Issues

We now describe the necessary steps with reference to computation of Entropy
Weight Measure.
Step 1. Transferring the Decision Matrix to a Proportion Matrix

In order to compute the entropy measure for the j th source, the related values in
the decision matrix are first normalized in terms of proportion as:

pi j = xi j/
∑

1≤t≤m

xt j ; 1 ≤ i ≤ m; 1 ≤ j ≤ n.

Step 2. Calculating the Entropy Measure for each source
In this step, the entropy of the j th Source, E j , is calculated as follows:

E j = −α
∑

1≤i≤m

pi j ln(pi j ); 1 ≤ j ≤ n.

where, α = 1/ ln(m);m being the total number of alternative locations.
Next, the operation of subtraction is used to measure the Degree of Diversity,

Dj , relative to the corresponding anchor value (unity), using the formula: Dj =
1 − E j ; 1 ≤ j ≤ n.
Step 3. Defining Source-wise Entropy Weights

The entropy weight W of each source is calculated using
Wj = Dj/

∑
t Dt ; 1 ≤ j ≤ n.

Wehave thus ascertained theweights of eachof the sources as per entropymeasure.
Another method is based on the notion of ‘Coefficient of Variation’ [CV ] defined
as CV = sd/mean. Weights are taken to be directly proportional to the respective
CV’s or their squares [for computational simplicity]. We will also describe another
method, known as ‘method of reversal.’

Once the weights are chosen [by any convenient method], these weights are then
incorporated into a suitable formula to calculate an overall score for each location.
The Topsis Method [TM] is chosen because of its high speed, accuracy, and com-
patibility [5]. The algorithm of this technique is summarized as follows:

(1) Transfer the Decision Matrix to a Normalized Decision Matrix R = ((ri j )) [in
the sense of unit squared length i.e.,

∑
i r

2
i j = 1 for each j = 1, 2, . . . , n]:

ri j = xi j/

√∑

t

x2t j ; 1 ≤ i ≤ m; 1 ≤ j ≤ n.

(2) Weigh the Normalized Decision Matrix R using the Source Weights:

V = ((vi j )); vi j = Wjri j ; 1 ≤ i ≤ m; 1 ≤ j ≤ n.
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(3) Define the ‘Ideal Positive’ and ‘Ideal Negative’ solutions:

V+
j = min1≤i≤mvi j ; 1 ≤ j ≤ n; V−

j = max1≤i≤mvi j ; 1 ≤ j ≤ n.

Note that in the above, ‘Ideal’ corresponds to minimum v-score while ‘Anti-
ideal’ corresponds to maximum v score across all the locations for each source.

(4) Measure the distances, d+
i and d−

i , from the ideal and negative ideal solutions:

d+
i =

⎡

⎣
∑

j

(vi j − V+
j )2

⎤

⎦
1/2

; d−
i =

⎡

⎣
∑

j

(vi j − V−
j )2

⎤

⎦
1/2

.

In the above, the ‘distance measure’ used is referred to as ‘Euclidian distance’
or ‘Euclidian Norm,’ denoted by L2.

(5) Determine the relative closeness of alternatives to ideal solution by computing
what is known as ‘Composite Index’ [CI]:

C Ii = d+
i /[d+

i + d−
i ]; i = 1, 2, . . . ,m.

These composite indices are used for final ranking of the methods, the rule being:
min. - to - max. for ranks 1 - to - m.

5.4 Topsis Method: Computational Details
in an Illustrative Example

We take up a hypothetical example involving eight different locations and seven
distinct sources. The data set is shown in Table5.1.

Inwhat follows,wedealwith twodifferent approaches for ascertaining theweights
of the sources: (i) Entropymeasure and (ii)CV 2. There is also a third approach known
as ‘Reversal Method’ which is explained below.

1. Start with equal weights for all the sources and rank the locations, using TM and
following one specific distance measure.

2. Reverse the roles of sources and locations, and rank the sources, using the ranks
of the locations derived in Step 1 as their weights.

3. Now reverse their roles again and use ranks of the sources [derived in Step 2] as
their weights.

4. This yields the ranks of the locations eventually.

We will not pursue this third approach here.
Before proceeding further, we display the weights as determined by the first two

methods for the above data set (Tables5.2, 5.3, 5.4, 5.5, 5.6, and 5.7).
We now proceed with the rest of the computations.



5.4 Topsis Method: Computational Details in an Illustrative Example 57

Table 5.1 Locations versus sources: data on toxic release [in percentage] across different locations
and sources

Location Sl No. Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 Source 7

I 7 13 21 3 24 21 17

II 12 9 18 3 32 28 11

III 17 4 23 7 22 19 23

IV 9 11 17 15 15 23 19

V 14 10 13 8 21 19 25

VI 6 11 19 5 23 21 22

VII 15 9 13 14 18 19 18

VIII 16 11 10 5 13 20 15
∑

i xi j 96 78 134 60 168 170 150
∑

i x
2
i j 1276 810 2382 602 3772 3678 2958

Table 5.2 Normalized scores ((p‘i j s)) and entropy-based source-specific weights

Location Sl No. Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 Source 7

I 0.073 0.166 0.156 0.0500 0.143 0.123 0.113

II 0.125 0.116 0.134 0.0500 0.190 0.165 0.073

III 0.177 0.051 0.172 0.118 0.132 0.112 0.153

IV 0.094 0.141 0.127 0.250 0.089 0.135 0.127

V 0.146 0.128 0.097 0.133 0.125 0.112 0.167

VI 0.062 0.141 0.142 0.083 0.137 0.123 0.147

VII 0.156 0.116 0.097 0.233 0.107 0.112 0.120

VIII 0.167 0.141 0.075 0.083 0.077 0.118 0.100
∑

i pi j 1.000 1.000 1.000 1.000 1.000 1.000 1.000

E j 0.9723 0.9817 0.9849 0.9210 0.9834 0.9959 0.9872

Dj = 1 − E j 0.0277 0.0183 0.0151 0.0190 0.0166 0.0041 0.0128

Wj 0.2438 0.1611 0.1329 0.1672 0.1462 0.0361 0.1127

Table 5.3 CV 2-based source-specific weights

Location Sl No. Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 Source 7
∑

i xi j 96 78 134 60 168 170 150
∑

i x
2
i j 1276 810 2382 602 3772 3678 2958

∑
i (xi j − x̄ j )2 124.0 49.5 137.5 152.0 244.0 65.5 145.5

CV 2 0.1076 0.0651 0.0610 0.3377 0.0692 0.0181 0.0517

CV 2-based
weights W (CV 2)

0.1514 0.0916 0.0859 0.4753 0.0974 0.0255 0.0728
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Table 5.4 Normalized decision matrix R = ((ri j ))

Location Sl No. Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 Source 7

I 0.1960 0.4568 0.4303 0.1223 0.3908 0.3463 0.3126

II 0.3359 0.3162 0.3688 0.1223 0.5210 0.4617 0.2022

III 0.4759 0.1405 0.4713 0.2853 0.3582 0.3133 0.4229

IV 0.2519 0.3865 0.3483 0.6113 0.2442 0.3792 0.3493

V 0.3919 0.3514 0.2664 0.3261 0.3419 0.3133 0.4597

VI 0.1680 0.3865 0.3893 0.2038 0.3745 0.3463 0.4045

VII 0.4199 0.3162 0.2664 0.5756 0.2931 0.3133 0.3310

VIII 0.4479 0.3865 0.2049 0.2038 0.2117 0.3298 0.2758
∑

i r
2
i j 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5.5 Weighted normalized decision matrix V = ((vi j )) = ((Wjri j )) with entropy weights
and ideal positive and ideal negative solutions

Location Sl No. Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 Source 7

I 0.0478 0.0736 0.0572 0.0204 0.0571 0.0125 0.0352

II 0.0819 0.0509 0.0490 0.0204 0.0762 0.0167 0.0228

III 0.1160 0.0169 0.0626 0.0477 0.0524 0.0113 0.0477

IV 0.0614 0.0623 0.0463 0.1022 0.0357 0.0137 0.0394

V 0.0955 0.0566 0.0354 0.0545 0.0500 0.0113 0.0518

VI 0.0409 0.0623 0.0517 0.0341 0.0547 0.0125 0.0456

VII 0.1024 0.0509 0.0354 0.0962 0.0428 0.0113 0.0373

VIII 0.1092 0.0623 0.0272 0.0341 0.0309 0.0119 0.0311

Wj 0.2438 0.1611 0.1329 0.1672 0.1462 0.0361 0.1127

Ideal positive
solutions V+

0.0409 0.0169 0.0272 0.0204 0.0309 0.0113 0.0228

Ideal negative
solutions V−

0.1160 0.0736 0.0626 0.1022 0.0762 0.0167 0.0518

Remark 5.1 We leave it to the interested reader to take up the exercise of determi-
nation of (i) distance measures d+

i and d−
i with CV 2-based weights, (ii) composite

indices, and, finally, (iii) the ranks of the locations based on CV 2-based weights.

Remark 5.2 It would be interesting to work out ranking exercise using the ‘Reversal
Method’ as well.

Remark 5.3 The distance measure used in the above is based on the notion of
‘Squared Distance’ or ‘Euclidian Distance,’ and it is usually denoted by L2. The
expressions for d+

i = [∑ j (vi j − V+
j )2]1/2 and d−

i = [∑ j (vi j − V−
j )2]1/2 may be

explicitly written as
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Table 5.6 Weighted normalized decision matrix R = ((vi j )) = ((Wjri j )) with CV 2 weights and
ideal positive and ideal negative solutions

Location Sl No. Source 1 Source 2 Source 3 Source 4 Source 5 Source 6 Source 7

I 0.1960 0.4568 0.4303 0.1223 0.3908 0.3463 0.3126

II 0.3359 0.3162 0.3688 0.1223 0.5210 0.4617 0.2022

III 0.4759 0.1405 0.4713 0.2853 0.3582 0.3133 0.4229

IV 0.2519 0.3865 0.3483 0.6113 0.2442 0.3792 0.3493

V 0.3919 0.3514 0.2664 0.3261 0.3419 0.3133 0.4597

VI 0.1680 0.3865 0.3893 0.2038 0.3745 0.3463 0.4045

VII 0.4199 0.3162 0.2664 0.5756 0.2931 0.3133 0.3310

VIII 0.4479 0.3865 0.2049 0.2038 0.2117 0.3298 0.2758

CV 2-based
weights W (CV 2)

0.1514 0.0916 0.0859 0.4753 0.0974 0.0255 0.0728

Ideal positive
solutions V+

0.1680 0.1405 0.2049 0.1223 0.2117 0.3133 0.2022

Ideal negative
solutions V−

0.4759 0.4568 0.4713 0.6113 0.5210 0.4617 0.4597

Table 5.7 Computations of distance measures d+
i and d−

i with entropy weights, composite indices
and ranks

Location Sl No. d+
i d−

i CI Rank

I 0.07074 0.10968 0.3921 2

II 0.07344 0.09693 0.4311 3

III 0.08700 0.08265 0.5128 5

IV 0.09921 0.07191 0.5798 7

V 0.08362 0.06663 0.5565 6

VI 0.06274 0.10508 0.3738 1

VII 0.10537 0.05321 0.6645 8

VIII 0.08356 0.08388 0.4990 4

d+
i =

⎡

⎣
∑

j

(xi j − min j )
2Wj∑

t x
2
t j

⎤

⎦
1/2

;

d−
i =

⎡

⎣
∑

j

(xi j − max j )
2Wj∑

t x
2
t j

⎤

⎦
1/2

.

In the above, min j refers to least value of xi j ’s for every fixed j across the j th
column.
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Another distance measure is also used at times. That is called ‘Absolute Distance’
or, L1-norm. Using L1-norm amounts to defining

d+
i =

∑

j

(xi j − min j )Wj∑
t xt j

;

d−
i =

∑

j

(max j − xi j )Wj∑
t xt j

.

and computing the composite indices as C Ii = d+
i /[d+

i + d−
i ]; i = 1, 2, . . . ,m.

We will not get into the computational details.
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Chapter 6
Statistical Assessment of Agreement

6.1 General Introduction to Agreement

Researchers have become increasingly aware of the problem of assessing agreement
since more than one and a half century in the past. There are numerous examples
that illustrate these situations, and here we list some of them. In clinical and medical
measurement comparison of a newly developed measurement method with an estab-
lished one, it is often desired to check whether they agree sufficiently and accurately
enough for the new to replace the old. The new method of measurement is most
often cheaper, quicker, and suboptimal; however, it needs a thorough and careful
examination to see if it can effectively replace the old one. In criminal trials, a group
of jurors are used and sentencing depends on the complete agreement among the
jurors. Hotels receive five-star recognition only after several experts and designated
visitors agree on the services and facilities rendered by the hotels. The medals and
ranking in sport games are based on the ratings provided by several judges.

It has now become generally accepted thatmeasurements of agreement are needed
to assess the acceptability of new or generic process, methodology, and formulation
in both science and non-science fields of laboratory performance, instrument or assay
validation, method comparisons, statistical process control, goodness of fit, and indi-
vidual bioequivalence. Examples include the agreement of laboratory measurements
collected through various laboratory instruments, the agreement of a newly devel-
oped method with gold standard method, the agreement of manufacturing process
measurements with specifications, the agreement of observed values with predicted
values, and the agreement in bioavailability of a new or generic formulation with a
commonly used formulation. By the way, measuring agreement has been used very
often to designate the level of agreement between different data-generating sources,
commonly referred to as observers or raters. A rater could be a chemist, a psychol-
ogist, a radiologist, a clinician, a nurse, a rating system, a diagnosis, a treatment, an
instrument, a method, a process, a technique or a formula, to mention a few. Elemen-
tary to advanced statistical methods have been used over time to assess the level of

This chapter draws material from co-published work of one of the authors: ‘Some further aspects of
assessment of agreement involving bivariate normal responses,’ published in Int’l Jour. of Statistical
Sciences, Vol. 13, 2013, pp. 1–19. Portions have been used here with permission from the Author
Dr. Ganesh Dutta as well as Publisher.

© Springer Nature Singapore Pte Ltd. 2018
S. P. Mukherjee et al., Statistical Methods in Social Science Research,
https://doi.org/10.1007/978-981-13-2146-7_6

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2146-7_6&domain=pdf


62 6 Statistical Assessment of Agreement

agreement between different data-generating sources referred to above as observers
or raters.

Cohen’s Kappa statistic (1960) and weighted Kappa (1968) are the most popular
indices for measuring agreement when the responses are nominal. Weighted Kappa
statistic has been proposed by Landis and Koch (1977), and it is appropriate for
assessing agreement when the categories of response are ordinal. Several authors
have proposed guidelines for the interpretation of kappa statistic. Vide, for example,
Landis and Koch (1977), Fleiss (1981), Bland and Altman (1986), and Kraemer et al.
(2002). A comprehensive review paper is also worth reporting (Banerjee et al. 1999).
Recently, some studies have been undertaken to critically examine certain aspects
of Cohen’s Kappa. These relate to its attaining the negatively extreme value and its
standardization. See Pornpis et al. (2006).

Extensions have also been made to allow for more than two raters, more than two
possible ratings, ordinal data and continuous data. In addition, many other applica-
tions of kappa statistic in a variety of different contexts can be found in the literature.
A reference book in this area is by Eye and Mun (2005). Another book dealing
with both categorical and continuous measurements for multiple raters and multiple
ratings is by Shoukri (2004).

Lin (1989) introduced the concordance correlation coefficient (CCC) for measur-
ing agreement which ismore appropriate when the data aremeasured on a continuous
scale. A weighted CCC was proposed by Chinchilli et al. (1996) for repeated mea-
surement designs and a generalized CCC for continuous and categorical data was
introduced by King and Chinchilli (2001). Lin (2000) also introduced total devia-
tion index (TDI) for measuring individual agreement with applications in laboratory
performance and bioequivalence. Further to this, Lin et al. (2002) proposed meth-
ods for checking the agreement in terms of coverage probability(CP) when the two
measurements are quantitative in nature.

When the study of agreement involves three or more raters on a continuous scale,
there are different approaches to follow. Two most recent references are (i) Barnhart
et al. (2007) and (ii) Lin et al. The authors broadly follow (i) ANOVA and (ii)
modeling approach to examine the extent of agreement. The approach proposed and
studied in Lin et al. (2002) has been extended in Hedayat et al. (2009) for the case
of multiple raters.

We will touch upon some of the techniques developed for study of agreement
involving both types of data.

6.2 Cohen’s Kappa Coefficient and Its Generalizations:
An Exemplary Use

There are many instances of applications of the basic technique for assessing agree-
ment between two raters, in case the subjects are rated according to a binary feature,
to be designated as Yes and No. Cohen’s Kappa (1960) was suggested in the agree-
ment literature with this specific purpose. Generalizations and extensions to other
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contexts were brought in from time to time. We will discuss at length one study
carried out in a hospital in Bangkok [Pornpis et al. (2006)].

Rajavithi Hospital, Bangkok, Thailand houses Thai Screening for Diabetic
Retinopathy Study Group in its Department of Ophthalmology. Three MD doctors
Dr. Paisan Ruamviboonsuk, Dr. Khemawan Teerasuwanajak, and Dr. Kanokwan
Yuttitham carried out a revealing diagnostic study in this specialist eye hospital hav-
ing [in-house and confined to hospital beds] 600+ diabetic patients. All the patients
were under treatment for diabetic retinopathy of different degrees of severity. The
study was based on randomly selected 400/600+ diabetic patients and from each
selected patient, one good single-field digital fundus image was taken with signed
consent and with due approval by Ethical Committee on Research with Human Sub-
jects.

The purpose was to extract information from each image on three major features:
(i) Diabetic Retinopathy Severity [6 options]:
No Retinopathy/Mild/Moderate NPDR/Severe NPDR/PDR/Ungradable;
(ii) Macular Edema [2 options]: Presence/Absence/Ungradable;
(iii) Referral to Ophthalmologists [2 options]: Referrals / Non-Referrals / Uncer-

tain.
These features were extracted by (i) Retina Specialists [3], (ii) General Oph-

thalmologists [3], (iii) Photographers [3] and (iv) Nurses [3]—all engaged in their
respective meaningful professions within the hospital. It thus transpires that alto-
gether 12 raters collected data on each of the 3 features mentioned above and from
each of the 400 images so collected. Therefore, the study group was loaded with
massive amount of data.

The objective of the research study was to examine the extent of agreement within
and between different Expert Groups and to provide adequate interpretation of the
results. It is believed that all the 12 experts/raters examined the images independently
of one another.

As noted from the above, items (ii) and (iii) deal mostly with binary response
[Presence versus Absence or Referral versus Non-Referral] data while item (i) deals
withmulti-response categorical data.Wewill slightlymodify item response for (ii) to
give it a shapeof binary responsedata. It is revealed that thefirst twoRetinaSpecialists
RS1 and RS2 independently counted the respective Presence–Absence responses [in
respect of the Feature: Macular Edema] as: 337 versus 40 and 344 versus 33. This
indeed showed remarkable agreement among them upfront [89 versus 11 percent
and 91–9 percent]! It was too good to be acceptable. The study group wondered
about the validity of the findings and contacted Dr Montip Tiensuwan, Statistics
Faculty, Department of Mathematics, Mahidol University, Bangkok. Dr Tiensuwan
had already studied the literature on Statistical Assessment ofAgreement andworked
with one of the authors of this article [Sinha]. Her collaboration with the Hospital
Study Group was successful, and it eventually resulted in a good journal publication.
We will now elaborate on the major findings of their study.

It is clear that each image was inspected by each of the three RSs, and hence, it
is possible to examine the scope of agreement more closely before deciding on its
extent. As is stated above, RS1 and RS2 largely agreed on classification of patients
into Presence–AbsenceCategoriesw.r.t.Macular Edema. But this only reflectedwhat
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is called marginal nature of binary classification. We are also in a position to check
case by case the nature of agreement or otherwise of RS1 and RS2. For example,
when pairwise ratings given by RS1 and RS2 are considered for each of the 377
patients, we find that

[(Y,Y ) : 326/377; (Y, N ) : 11/377; (N ,Y ) : 18/400; (N , N ) : 22/377]

- the ‘marginal’ totals being [RS1(Y ) : 337/377; RS2(Y ) : 344/377], as was
specified above. It transpires that there are altogether 29/377 = 89 percent cases
of disagreement between the two raters. In effect, therefore, RS1 and RS2 are in
very good agreement. And this Cohen designated as observed agreement, denoted
by θ0. According to Cohen, this is only half of the story and it could as well be due to
what he assigned as chancy agreement! The idea is that two so-called experts could
purely agree by chance—by making assessments independently. Using elementary
probability formula, he computed the contribution from chancy agreement as:

θe = P[Y,Y ] + P[N , N ] = P[Y, .]P[.,Y ] + P[N , .]P[., N ]

by referring to the ‘marginal probabilities.’ According to this formula, for the above
data set, chancy agreement, denoted by θe is computed as 82.50 percent! Cohen then
suggested ‘chance-corrected’ agreement index as

κ = θ0 − θe

1 − θe
.

Computation yields κ = 56 percent which suggests amoderate level of agreement
only. Likewise, it is a routine task to compute κ coefficient between RS1 and RS3
or, between RS2 and RS3. It may be noted that the κ coefficients do not obey any
transitivity law.

This study became instantly famous because of the following special feature. For
any group of 3 Experts [Retina Specialists/General Ophthalmologists/etc/etc], the
purview of the study also captured Consensus Rating [CR] of the raters for each
feature. Thus, for example, in respect of Macular Edema, there was a Consensus
Rating given collectively by the 3 RSs as follows: [Presence: 355/400; Absence:
35/400; Ungradable: 10/400]. Subsequently, κ coefficient was computed for the
RSs as against the CR[RS] one by one.

Also for that matter, we can compute κ values in respect of the feature (iii), by
restricting to the 2 × 2 case of binary response, neglecting the uncertain category.
We will skip the details.

So far as the feature in item (i) is concerned, we need to be careful in assessing
the extent of agreement between any two raters [or between a rater of a category and
the CR of the same category]. This is because we are now dealing with six categories
of response in respect of the status of Diabetic Retinopathy [DR] as mentioned in
(i). Cohen’s original idea of computation of κ, based on θ0 and θe, does not pose any
difficulty anyway. First of all, we can visualize the response count data for a pair of
experts as forming a table of order 6 × 6 with the percentage counts along the main
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diagonal [say, fii/n for the i th category of response] serving as constituents of θ0. By
the same token, products of percentage counts [based on the notion of independence]
such as ( fi,./n)( f.,i/n) will add up to the computation for θe. Then the formula for
κ can be routinely applied. This was done and sooner or later, it drew criticism! We
will take up the data set for RS1 versus RS2 and examine the matter below.

We will follow the codes: Code I - No Retinopathy; Code I I - Mild; Code I I I -
Moderate NDPR; Code I V Severe NPDR; Code V PDR and Code V I : Ungradable.

Along the main diagonal, the percentage of observed agreement θ0 amounts to
80.50 percent. Further, direct computation yields for θe = 48.60 percent. Hence,
κ = 62 percent a very moderate level of agreement. The criticism has been based on
the following arguments: Pairwise categories

[(Code I,Code I I ), (Code I I,Code I ), (Code I I,Code I I I ), (Code I I I,Code I I )etcetc]

represent what may be termed as ‘narrowly missed’ cases. Cohen’s κ does not take
cognizance of these narrowlymissed cases/classes and attributes no creditwhatsoever
to the raters. It is argued that one should make a case of allowing for partial credits
to be attributed to such and similar categories. In contrast to Cohen’s original κ—
termed henceforth as Unweighted κ—weights were assigned to all the categories
and κ was modified to Weighted κ, written as κ(W ). It is computed along similar
lines as

κ(W ) = (θ(W )0 − θ(W )e)/(1 − θ(W )e)

where fi jWi j s are used in the computation of θ(W )0 and fi. f. jWi j s are used in
the computation of θ(W )e. The choice of the weight matrix W = ((Wij)) has not
been any smooth matter. Reasonable and acceptable choice of the weight matrix of
dimension R have the elements Wi j = 1 − (i − j)2/(R − 1)2.

Weighted κ statistics were calculated for pairs of raters, including comparison
against the CR in respect of all the three features listed in (i), (ii), and (iii). The
results are shown in the Appendix.

This study also covered another important aspect of comparisonof expertise across
different specialist groups. In the published literature, there are formulae available
to account for this kind of comparison. Applied to this case, a measure of composite
performance of 3 Retina Specialists/3 Ophthalmologists/3 Technicians/3 Nurses for
each of the 3 features was computed. For example, for DR, it was revealed that
composite performance indices are

RS − 0.58; Oph. − 0.36; T ech. − 0.37, Nurses − 0.26.

Likewise, for Macular Edema, the values are: [0.58, 0.19, 0.38, 0.20] and for Refer-
ral, these are: [0.63, 0.24.0.30, 0.20].

It transpired that except for the Retina Specialists, no other categories of so-called
experts showed any visible mode of agreement in any of the features. Of all 400
cases, 44 warranted Referral to Ophthalmologists due to Retinopathy Severity and
5 warranted Referral to Ophthalmologists due to uncertainty in diagnosis. Fourth
Retina Specialist carried out dilated fundus examination of these 44 patients, and
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substantial agreement [κ = 0.68]was noticed forDRseverity examination confirmed
Referral of 38/44 cases.

In conclusion, it is stated that Retina Specialists are all in active clinical practice
and hence are most reliable for digital image interpretation of images. Individual
Raters’ background and experience play roles in digital image interpretation exper-
tise. Unusually, high percentage of images were declared as ungradable by nonphysi-
cian raters, though only 5 out of 400 were declared as ungradable by consensus of
the Retina Specialists Group. Lack of confidence of non-physicians, rather than true
image ambiguity, is likely to be a realistic reason for this. For this study, other factors
[blood pressure, blood sugar, cholesterol, etc.] had not been taken into account.

6.3 Assessment of Agreement in Case of Quantitative
Responses

In this section, we focus on the feature of agreement involving data for two competing
ratersmeasured on a continuous scale. There are several usual approaches for evaluat-
ing agreement for such paired data such as Pearson correlation coefficient, regression
analysis, paired t-tests, least-squares analysis for slope and intercept, within subject
coefficient of variation, and intra-class correlation coefficient.

The concordance correlation coefficient (CCC) was first proposed by Lin (1989)
for assessment of agreement in continuous data. It represents a breakthrough in
assessing agreement between two raters for continuous data in that it appears to
avoid all the shortcomings associated with usual approaches in some situations. In
short, Lin (1989) expresses the degree of concordance between two variables X and
Y by the Mean Squared Deviation (MSD), E(X − Y )2 and defines the CCC as

ρc = 1 − E(Y − X)2

EIndep(Y − X)2
= 2σxy

σ2
x + σ2

y + (μx − μy)2
(6.3.1)

where EIndep(.) represents expectation under the assumption of independence of X
and Y , μx = E(X), μy = E(Y), σ2

x = Var(X), σ2
y = Var(Y), and σxy = Cov(X,Y) =

ρσxσy .
It is readily seen that ρc can be expressed as

ρc = ρ × 2σ1σ2

(μx − μy)2 + (σ2
x + σ2

y)

Further to this, it follows that

ρc = 1 i f and only i f [ρ = 1,μx = μy;σx = σy].

Lin (1989) estimates this CCC [ρc]with data by substituting the sample moments
of bivariate sample into above formula to compute the sample counterpart of CCC
(ρc). The CCC translates the MSD into a correlation coefficient that measures the
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agreement along the identity line. It has the properties of a correlation coefficient in
that it ranges between −1 and +1, with −1 indicating perfect reversed agreement
(Y = −X), 0 indicating no agreement, and +1 indicating perfect agreement (Y =
X). Lin et al. (2002) gave a review and comparison of various measures, including
the CCC, of developments in this field by comparing the powers of the tests:

(1) μx = μy , (2) σx = σy , and (3) ρ = ρ0, where ρ0 is a given value, assumed to
be substantially high.

Their calculation is illustrated using a real data example. This work was further
extended in Hedayat et al. (2009) involving multiple raters. In another direction,
Yimprayoon et al. (2006) extended the work of Lin et al. (2002) by combining
the problems of testing for μx = μy , σx = σy , and ρ ≥ ρ0 into one overall testing
problem under bivariate normal setup and then they presented the result based on
simulation study.

An intuitively clear measurement of agreement is a measure that captures a large
proportion of data within a predetermined boundary from the line of agreement, i.e.,
X = Y . In other words, we want the probability of the absolute value of D = Y − X
less than the specified boundary, k, to be large. This probability is termed in the
literature as coverage probability (CP) (cf. (Lin et al. 2002)), and it is defined as

CP(k) = P[|D| < k], (6.3.2)

where X and Y denote random variables representing paired observations for assess-
ing the agreement. It is generally assumed that X and Y have a bivariate normal
distribution with means μx and μy , variances σ2

x and σ2
y and correlation coefficient

ρ so that the covariance of X and Y is σxy = ρσxσy .
The multiparameter hypothesis involving (6.3.1), (6.3.2), and (6.3.3) displayed

above is too demanding for agreement between the two raters. Therefore, a more
appropriate and plausible null hypothesis can be formulated as

H0 : |μx − μy | ≥ ε0,
σx

σy
or

σy

σx
≥ η0, ρ ≤ ρ0 (6.3.3)

where ε0 is close to zero and η0 and ρ0 are close to unity—all are assumed to be
specified. A large sample test [known as Likelihood Ratio Test] of this hypothesis
has been worked out in Dutta and Sinha (2013).
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Chapter 7
Meta-Analysis

7.1 Introduction

The commonmean estimation problemwasfirst introduced byCochran (1937),while
hewas considering combining a series of similar experiments. The general setting for
this kind of problem is: Suppose we have k independent groups of normal variables
with sample size ni , for the i th group, having the sample mean ȳi N (μ,σ2

i /ni )where
i = 1, 2, . . . , k.

The setup presupposes that there is a common unknown mean μ for the k popula-
tions, and the problem considered is that of efficient unbiased estimation of μ based
on the data from the k groups.

For k = 2, Cochran (1937) suggested the unbiased estimator

μ̂ = [ȳ1n1/σ2
1 + ȳ2n2/σ2

2]
[n1/σ2

1 + n2/σ2
2]

.

This estimator is the best linear unbiased estimator [BLUE] of the common mean
μ, assuming that the two population variances σ2

1 and σ2
2 are both known.

In case both the variances are unknown, a natural way out would be to replace
themby their sample counterparts, i.e., their unbiased estimates σ̂2

i = s2i = [∑(yi j −
ȳi )2/(ni − 1)]; i = 1, 2. Graybill andDeal (1959)were prompted by thismotivation,
and they introduced

μ̂ =
∑

i ȳi ni/σ
2
i∑

i ni/σ
2
i

.

and this is referred to in the literature as Graybill–Deal estimator μ̂G−D . The sam-
ples are assumed to have been drawn from normal populations. As a consequence,
sample means and sample variances are distributionally independent. That justifies,
by E1E2 argument, that the Graybill–Deal estimator is unbiased for the mean μ. The
properties of such estimators have been widely studied in the literature. In particular,
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we would like to mention the works of Meier (1953), Cochran and Carroll (1953),
Zacks (1966), Rao and Subrahmaniam (1971), Khatri and Shah (1974), Sinha (1985),
and Krishnamoorthy and Moore (2002).

Below we will discuss some results in this fascinating area of meta-analysis and
data analysis.

7.2 Estimation of Common Bernoulli Parameter “p”

This is the simplest application of meta-analysis. There are a number of independent
studies toward estimation of a Bernoulli parameter p. From the i th study, we come
across a total of ni counts out of which fi correspond to “success” counts; i =
1, 2, . . . , k. We know that p̂ = fi/ni ; i = 1, 2, . . . , k. Using the additive property
of binomial distribution, it follows that

∑
i fi = f Bin(n, p)where n = ∑

i ni . As a
result, p̂ = f/n. The same result also follows from an application of Graybill–Deal
formula. From the i th source, we have

p̂i = fi/ni ; V ( p̂i ) = p(1 − p)/ni ; i = 1, 2, . . . , k.

By combining these estimates according to Cochran/Graybill–Deal formula, we
deduce the above result. For a single parameter p in a Bernoulli setup, the result
on a combination of evidences from a number of independent sources is thus quite
obvious. It is also known that for f Bin(n, p), an unbiased estimator for p(1 − p)
is given by f (n − f )/n(n − 1).

7.3 Estimation of Common Mean of Several Normal
Populations

We start with k univariate normal populations with a common unknown mean μ and
possibly different and unknown population variances σ2

i ; i = 1, 2, . . . , k. We have
available random samples (yi j ; j = 1, 2, . . . , ni ; i = 1, 2, . . . , k) from the popula-
tions where the sample sizes ni ; i = 1, 2, . . . , k are known in advance with ni ≥ 2
for each i .

Case 1 : σ2
i s are known be f orehand

It follows that the sample means form a set of jointly sufficient statistics for the
population mean μ and, further, that the joint distribution of the sufficient statistics
is not complete. It is well known that the weighted mean

ȳ =
∑

i ȳi ni/σ
2
i∑

i ni/σ
2
i
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serves as the BLUE for μ. However, this case is far from reality wherein we have no
firsthand idea about the population variances—not even possibly about their relative
values. This case is discussed below.

Case 2 : σ2
i s are unknown be f orehand

It follows that the sample means

ȳi ; i = 1, 2, . . . , k

and sample variances with appropriate divisors like

s2i =
∑

j

(yi j − ȳi )
2/(ni − 1); i = 1, 2, . . . , k

are jointly sufficient statistics for the populationmeanμ and the population variances.
Further, the joint distribution of the sufficient statistics is not complete. It is in this
context that Graybill and Deal (1959) suggested the following estimator for the
common mean μ:

μ̂G−D = ¯̄y =
∑

i ȳi ni/s
2
i∑

i ni/s
2
i

.

The above provides a computational formula for theGraybill–Deal estimate μ̂G−D

of the common mean μ.
We recall that in normal samples the sample means and sample variances are

independently distributed. Therefore, we can work out

E[μ̂G−D] = E1E2[ ¯̄y] = E1[μ] = μ.

In the above, we have used the fact that E[ȳi ; given s2i ] = μ for each population.
Further,

Var [μ̂G−D] = [V1E2 + E1V2](μ̂G−D) = E1

[ ∑
i σ

2
i ni/s

4
i

(∑
i ni/s

2
i

)2

]

.

since V1E2 = V1[μ] = 0.

Remark 7.1 An exact analytical expression for the above quantity is hard to derive.
In an infinite series form, it has been provided by Khatri and Shah (1974). Also, a
first-order approximation has been provided by Meier (1953) and this is reproduced
below.

1
∑

ni/σ2
i

[
1 + 2

∑
ci (1 − ci )/(ni − 1) + · · ·

]
; ci = (ni/σ

2
i )

(
∑

t

ntσ
2
t

)−1

, i = 1, 2, . . . , k.
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Following Meier (1953), an approximation for estimated variance of m̂uG−D is
given by

1
∑

i ni/s
2
i

⎡

⎢
⎣1 +

∑

i

(4/(ni − 1))

⎡

⎢
⎣

ni/s2i∑
t nt/

∑
s2t

− n2i /s
4
i

(∑
t nt

∑2
t

)2 + · · ·
⎤

⎥
⎦

⎤

⎥
⎦

Toward unbiased estimation of the above variance, there has been an attempt by
Sinha (1985) and a first-order approximation of the estimated variance is given by

1
∑

i ni/s
2
i

⎡

⎢
⎣1 +

∑

i

(4/(ni + 1))

⎡

⎢
⎣

ni/s2i∑
t nt/

∑
s2t

− n2i /s
4
i

(∑
t nt

∑2
t

)2 + · · ·
⎤

⎥
⎦

⎤

⎥
⎦

There are two other variance estimators available in the published literature. These
are:

1/

[
∑

i

ni/s
2
i

]

;

1

k − 1

[
∑

i

(ni/s2i )∑
t nt/s

2
t
(ȳi − μ̂G−D)

2

]

.

Remark 7.2 Apart from the exercise on computation of estimate of the common
mean and its estimated variance, research has gone in a different direction. In a
theoretical framework, it is well known that the “k-population means-based com-
mon mean estimator” as weighted mean of individual estimators [which are respec-
tive sample means] is better than any “(k − 1)-subpopulation means-based common
mean estimator” as weighted mean of individual estimators for the subset of (k − 1-
populations and so on. This is a very general resultwhose proof is almost trivial. How-
ever, in case of Graybill–Deal estimator, variance comparison for two estimators—
one based on k-populations and the other based on a subset of (k − 1) populations—is
very much a non-trivial exercise. In fine, this comparison depends very much on the
individual sample sizes. In short, we need a minimum sample size from each popu-
lation so that a sense of “improvement” based on an increasing number of competing
populations can be established. We will not discuss this matter any further.

7.4 Meta-Analysis in Regression Models

This time we discuss the problem of unbiased estimation of the common parameter
θ involved in the linear regression models of the means of two independent normal
populationswith unequal and unknown variances.Wework out the popularGraybill–
Deal estimator for the common parameter.
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We start with two simple linear regression models:

y1 j = α1 + β1x1 j + e1 j ; j = 1, 2, . . . , n1; E(e1 j ) = 0; E(e21 j ) = σ2
1; E(e1 j e1t ) = 0, j �= t.

y2 j = α2 + β2x2 j + e2 j ; j = 1, 2, . . . , n2; E(e2 j ) = 0; E(e22 j ) = σ2
2; E(e2 j e2t ) = 0, j �= t.

As usual,

α̂1 = ȳ1 − β̂1 x̄1; α̂2 = ȳ2 − β̂2 x̄2;

β̂1 =
∑

j (y1 j − ȳ1)(x1 j − x̄1)
∑

j (x1 j − x̄1)2
= SPXY11

SSX1
;

β̂2 =
∑

j (y2 j − ȳ2)(x2 j − x̄2)
∑

j (x2 j − x̄2)2
= SPXY22

SSX2
.

V (α̂i ) = σ2
i [1/ni + x̄2i /SSXi ]; i = 1, 2.

σ̂2
i =

∑

t

[(yit − ȳi ) − β̂i (xit − x̄i )]2/(ni − 2); i = 1, 2.

Now suppose we are in a situation which leads to the validity of the assumption of
equality of the two intercept parameters, that is, α1 = α2 = α, say. Then, we have
two estimates forα, and hence, we can combine the two to form aGraybill–Deal-type
estimate. It is defined as α̂ where

α̂

[
1

σ̂2
1[1/n1 + x̄21/SSX1] + 1

σ̂2
2[1/n2 + x̄22/SSX2]

]

= α̂1

σ̂2
1[1/n1 + x̄21/SSX1] + α̂2

σ̂2
2[1/n2 + x̄22/SSX2] .

Under the above linear regression framework, if it so transpires that the mean regres-
sion lines are identical, i.e., α1 = α2;β1 = β2, then the common intercept parameter
α and the common regression parameter β are estimated by matrix version of the
Graybill–Deal-type estimator which is described below.

We denote by θ the two-dimensional vector parameter α,β. Then

θ̂ = [(σ̂2
1W1)

−1 + (σ̂2
2W2)

−1]−1[(σ̂2
1W1)

−1θ̂1 + (σ̂2
2W2)

−1θ̂2].

It follows that θ̂ is unbiased for θ. The proof is based on E1E2 argument and the fact
that estimates of the error variances are independent of the estimates of the model
parameters in a regression context.
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Chapter 8
Cluster and Discriminant Analysis

8.1 Introduction

Under multivariate analysis, two very important techniques are clustering and
classification. Under the problem of clustering, we try to find out the unknown num-
ber of homogeneous inherent groups in a data set as well as the structure of the
groups. But under classification, the basic problem is discrimination of objects into
some known groups. One of the most basic abilities of living creatures involves the
grouping of similar objects to produce a classification. Classification is fundamental
to most branches of science.

Cluster analysis has a variety of objectives. It is focussed on segmenting a collec-
tion of items (also called observations, individuals, cases, or data rows) into subsets
such that thosewithin each cluster aremore closely related to one another than objects
assigned to different clusters. The main focus in cluster analysis is on the notion of
degree of similarity (or dissimilarity) among the individual objects being clustered.
The two major methods of clustering are hierarchical clustering and k-means clus-
tering. Most of the clustering methods are exploratory in nature and do not need any
model assumption.

Different statistical techniques are available for clustering and classification
(Fraix-Burnet et al. 2015; De et al. 2013 and references there in). But depending
on the nature of the different types of data, several problems often arise and in some
cases a proper solution is still not available.

Sometimes the data set under consideration has a distributional form (usually
normal), and sometimes it is of non-normal nature. Based on the above point, there
is a justification needed about which clustering or classification technique should
be used so that it reflects the proper nature of the data set provided. This problem
is more relevant for classification as most of the classification methods are model

Sections of this chapter draw from one of the authors’ published work, ‘Statistical Methods for
Astronomical Data Analysis,’ authored by Asis Kumar Chattopadhyay and Tanuka Chattopadhyay,
and published in 2014 by Springer Science+Business Media, New York.

© Springer Nature Singapore Pte Ltd. 2018
S. P. Mukherjee et al., Statistical Methods in Social Science Research,
https://doi.org/10.1007/978-981-13-2146-7_8
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based. For clustering, most of the methods are nonparametric in nature and as such
the above problem is not very serious. But here also basic assumption is that the
nature of the variables under study is continuous, whereas under practical situations,
these may be categorical like binary, nominal, ordinal, and even directional (par-
ticularly for environmental and astronomical data). Under such situations, standard
similarity/dissimilarity measures will not work.

The clustering techniques which require an inherent model assumption are known
as model-based methods, whereas the clustering technique where no modeling
assumption or distributional form is needed may be termed as non-model-based
methods. Hence based on the nature of data set, one has to decide about proper
application of the two types of techniques.

At present, big data issues related to data size are quite common. In statistical
terms, these problems may be tackled in terms of both the number of observations
and the variables considered. Many standard clustering techniques fail to deal with
such big data sets. Thus, some dimension reduction methods may be applied at first
and then clustering may be performed on the reduced data set. Some data mining
techniques are very helpful under such situations.

Finally andmost importantly, after all these considerations, the similarity of group-
ing of objects obtained from different methods should be checked in terms of some
physical properties.

8.2 Hierarchical Clustering Technique

There are two major methods of clustering, viz. hierarchical clustering and k-means
clustering. In hierarchical clustering, the items are not partitioned into clusters in
a single step. Instead, a series of partitions takes place, which runs from a single
cluster containing all objects to n clusters each containing a single object. Hierar-
chical clustering is subdivided into agglomerative methods, which proceed by series
of combinations of the n objects into groups, and divisive methods, which sepa-
rate n objects successively into smaller groups. Agglomerative techniques are more
commonly used. Hierarchical clustering may be represented by a two-dimensional
diagram known as dendrogram which illustrates the additions or divisions made at
each successive stage of analysis.

8.2.1 Agglomerative Methods

An agglomerative hierarchical clustering procedure produces a series of partitions of
the data, Gn;Gn−1; :::::::; G1. The first Gn consists of n single-object ‘clusters,’ and
the lastG1 consists of single group containing all n cases. The structure of the groups
is not unique and depends on several factors like choice of the dissimilarity/similarity
measure, choice of the linkage measure.
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At each particular stage, the method adds together the two clusters which are most
similar. At the first stage, we join together two objects that are closest together, since
at the initial stage each cluster has only one object. Differences between methods
arise because of the different ways of defining dissimilarity or similarity between
clusters.

Hierarchical clustering is largely dependent on the selection of such a measure.
A simple measure is Manhattan distance, equal to the sum of absolute distances for
each variable. The name comes from the fact that in a two-variable case, the variables
can be plotted on a grid that can be compared to city streets, and the distance between
two points is the number of blocks a person would walk.

The most popular measure is Euclidean distance, computed by finding the square
of the distance between each variable, summing the squares, and finding the square
root of that sum. In the two-variable case, the distance is analogous to finding the
length of the hypotenuse in a triangle. Besides Manhattan and Euclidian distances,
there are other dissimilarity measures also based on the correlation coefficients
between two observations on the basis of several variables.

Alternatively, onemay use a similaritymeasure which is complementary in nature
and under the normalized set up, it may be obtained by subtracting the dissimilarity
measure from one.

8.2.2 Similarity for Any Type of Data

The above-mentioned dissimilarity/similaritymeasures are applicable to continuous-
type data only. But generally, we work with mixed-type data sets those include
different types like continuous, discrete, binary, nominal, ordinal. Gower (1971) has
proposed a general measure as follows:

The Gower’s Coefficient of Similarity:

Two individuals i and j may be compared on a character k and assigned a score sijk.
There are many ways of calculating sijk, some of which are described below.

Corresponding to n individuals and p variables, Gower’s similarity index Sij is
defined as

Sij = �
p
k=1sijk/�

p
k=1δijk(i, j = 1, 2, . . . n)

where δijk = 1 when character k can be compared

for observations i and j

= 0 otherwise

For continuous (quantitative) variables with values x1k , x2k , . . . , xnk for the kth
variable

sijk = 1− | xik − xjk | /Rk
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where Rk is the range of the variable k and may be the total range in population or
the range in the sample.

For a categorical (qualitative) character with m categories (m = 2 for binary
variable)

sijk = 0 if i and j are totally different

= q (positive fraction) if there is some degree of agreement

= 1 when i and j are same

8.2.3 Linkage Measures

To calculate distance between two clusters, it is required to define two representative
points from the two clusters (Chattopadhyay and Chattopadhyay 2014). Different
methods have been proposed for this purpose. Some of them are listed below.1

Single linkage: One of the simplestmethods is single linkage, also known as the near-
est neighbor technique. The defining feature of the method is that distance between
clusters is defined as the distance between the closest pair of objects, where only
pairs consisting of one object from each cluster are considered.

In the single linkage method, drs is computed as drs =Min dij, where object i is in
cluster r and object j is in cluster s and dij is the distance between the objects I and j.
Here the distance between every possible object pair (i, j) is computed, where object
i is in cluster r and object j is in cluster s. The minimum value of these distances is
said to be the distance between clusters r and s. In other words, the distance between
two clusters is given by the value of the shortest link between the clusters. At each
stage of hierarchical clustering, the clusters r and s, for which drs is minimum, are
merged.

Complete linkage: The complete linkage, also called farthest neighbor, clustering
method is the opposite of single linkage. Distance between clusters is now defined
as the distance between the most distant pair of objects, one from each cluster. In the
complete linkage method, d − rs is computed as drs = Max dij, where object i is in
cluster r and object j is cluster s. Here the distance between every possible object
pair (i, j) is computed, where object i is in cluster r and object j is in cluster s and the
maximum value of these distances is said to be the distance between clusters r and s.
In other words, the distance between two clusters is given by the value of the largest
distance between the clusters. At each stage of hierarchical clustering, the clusters r
and s, for which drs is minimum, are merged.

Average linkage: Here the distance between two clusters is defined as the aver-
age of distances between all pairs of observations, where each pair is composed
of one object from each group. In the average linkage method, drs is computed as

1A significant part of ‘Chattopadhyay and Chattopadhyay (2014). Statistical methods for Astro-
nomical Data Analysis, Springer Series in Astrostatistics, Springer’ is reproduced in this part.
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drs = Trs/(Nr × Ns) where Trs is the sum of all pair-wise distances between cluster
r and cluster s. Nr and Ns are the sizes of the clusters r and s, respectively. At each
stage of hierarchical clustering, the clusters r and s, for which drs is the minimum,
are merged.

Minimax Linkage: This was introduced by Bien and Tibshirani (2011). For any
point x and cluster G, define

dmax(x,G) = maxy∈G d(x, y)

as the distance to the farthest point in G from x. Define the minimax radius of the
cluster G as

r(G) = minx∈G dmax (x,G)

that is, find the point x ∈ G from which all points in G are as close as possible. This
minimizing point is called the prototype for G. It may be noted that a closed ball of
radius r(G) centered at the prototype covers all of G. Finally, we define the minimax
linkage between two clusters G and H as

d(G,H ) = r(GUH )

that is, we measure the distance between clusters G and H by the minimax radius of
the resulting merged cluster.

8.2.4 Optimum Number of Clusters

Usually, the number of clusters is determined from the dendrogram and validated
by the physical properties. We specify a horizontal line for a particular similar-
ity/dissimilarity value, and the clusters below this line are selected as optimum. But
somemathematical rules (thumb rules) are also available which are based on between
cluster and within cluster sum of squares values. If we denote by k, the number of
clusters and define byW(k) the sum of the within cluster sum of squares for k clusters
then the values of W(k) will gradually decrease with increase in k and that ‘k’ may
be taken as optimum where W(k) stabilizes. For detailed discussion, one may follow
the link http://www.cc.gatech.edu/~hpark/papers/cluster_JOGO.pdf.

8.2.5 Clustering of Variables

The hierarchical clustering method can also be used for clustering of variables on
the basis of the observations. Here instead of the distance matrix, one may start
with the correlation matrix (higher correlation indicating similarity of variables).

http://www.cc.gatech.edu/~hpark/papers/cluster_JOGO.pdf
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The linkage measures as listed in the previous section will not be applicable for
variable clustering. In order to measure similarity/dissimilarity between two clusters
of variables, one may either use the correlation between first principal components
corresponding to the two clusters or the canonical correlations.

8.3 Partitioning Clustering-k-Means Method

The k-means algorithm (MacQueen 1967) assigns each point to the cluster whose
center (also called centroid) is nearest. The center is the average of all the points in the
cluster that is, its coordinates are the arithmetic mean for each dimension separately
over all the points in the cluster. This method can be used for clustering of objects
and not variables.

This method starts with a value of k. We will discuss later the method of selection
of the value of k. Then we randomly generate k clusters and determine the cluster
centers, or directly generate k seed points as cluster centers. Assign each point to
the nearest cluster center in terms of Euclidian distance. Re-compute the new cluster
centers. Repeat until some convergence criterion ismet, i.e., there is no reassignment.
The main advantages of this algorithm are its simplicity and speed which allows it
to run on large data sets. Its disadvantage is that it is highly dependent on the initial
choice of clusters. It does not yield the same result with each run, since the resulting
clusters dependon the initial randomassignments. Itmaximizes inter-cluster variance
and minimizes intra-cluster variance.

The advantages of partitioning method are as follows (Chattopadhyay and
Chattopadhyay 2014):

(a) A partitioning method tries to select best clustering with k groups which is not
the goal of hierarchical method.

(b) A hierarchical method can never repair what was done in previous steps.
(c) Partitioning methods are designed to group items rather than variables into a

collection of k clusters.
(d) Since a matrix of distances (similarities) does not have to be determined and the

basic data do not have to be stored during the computer run, partitioningmethods
can be applied to much larger data sets.

For k-means algorithms, the optimum value of k can be obtained in different ways.
On the basis of the method proposed by Sugar and James (2003), by using k-

means algorithm first determine the structures of clusters for varying number of
clusters taking k = 2, 3, 4, etc. For each such cluster formation, compute the values
of a distance measure

dK = (1/p)minx E[(xk − ck)
′(xk − ck)]

which is defined as the distance of the xk vector (values of the parameters) from
the center ck (which is estimated as mean value), p is the order of the xk vector.
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Then the algorithm for determining the optimum number of clusters is as follows.
Let us denote by d ′

k the estimate of dk at the kth point which is actually the sum of
within cluster sum of squares over all k clusters. Then d ′

k is the minimum achievable
distortion associated with fitting k centers to the data. A natural way of choosing
the number of clusters is plot d ′

k versus k and look for the resulting distortion curve.
This curve is always monotonic decreasing. Initially, one would expect much smaller
drops, i.e., a leveling off for k greater than the true number of clusters because past
this point adding more centers simply partitions within groups rather than between
groups.

According to Sugar and James (2003) for a large number of items the distortion
curvewhen transformed to an appropriate negative power, will exhibit a sharp “jump”
(if we plot k versus transformed d ′

k ). Then calculate the jumps in the transformed
distortion as

Jk = (d ′−(p/2)
k − d ′−(p/2)

k−1 )

Another way of choosing the number of clusters is plot Jk versus k and look for the
resulting jump curve. The optimum number of clusters is the value of k at which the
distortion curve levels off as well as its value associated with the largest jump.

The k-means clustering technique depends on the choice of initial cluster cen-
ters (Chattopadhyay et al. 2012). But this effect can be minimized if one chooses
the cluster centers through group average method (Milligan 1980). As a result, the
formation of the final groups will not depend heavily on the initial choice and hence
will remain almost the same according to physical properties irrespective of initial
centers. In MINITAB package, the k-means method is almost free from the effect of
initial choice of centers as they have used the group average method.

8.4 Classification and Discrimination

Discriminant2 analysis and classification are multivariate techniques concerned with
separating distinct sets of objects and with allocating new objects to previously
defined groups. Once the optimum clustering is obtained by applying the method
discussed under previous section, one can verify the acceptability of the classifi-
cation by computing classification/misclassification probabilities for the different
objects. Although the k-means clustering method is purely a data analytic method,
for classification it may be necessary to assume that the underlying distribution is
multivariate normal. The method can be illustrated as follows for two populations
(clusters). The method can be easily generalized for more than two underlying pop-
ulations.

2A significant part of ‘Chattopadhyay and Chattopadhyay (2014). Statistical Methods for Astro-
nomical Data Analysis, Springer Series in Astrostatistics, Springer’ is reproduced in this part.
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Let f1(x) and f2(x) be the probability density functions associated with the p × 1
random vector X for the populations π1 and π2 respectively. Let � be the sample
space, i.e., collection of all objects. Let us denote by x the observed value of X . Let
R1 be that set of x values for which we classify objects as π1 and R2 = �R1 be the
remaining x values for which we classify objects as π2. Since every object must be
assigned to one and only one of the two groups, the sets R1 and R2 are disjoint and
exhaustive. The conditional probability of classifying an object as π2 when in fact it
is from π1 (error probability) is,

P(2 | 1) = P[X ∈ R2 | π1] = fR2f1(x)dx

Similarly, the other error probability can be defined. Let p1 and p2 be the prior
probabilities of π1 and π1, respectively, (p1 + p2 = 1). Then the overall probabilities
of correctly and incorrectly classifying objects can be derived as

P (correctly classified asπ1) =P (Observation actually comes fromπ1 and is correctly
classified as π1) = P[X ∈ R1 | π2]p2.
P (misclassified as π1) = P[X ∈ R1 | π2]p2.

The associated cost of misclassification can be defined by a cost matrix

Classified as
True population π1 π2

π1 0 C(2 | 1)
π2 C(1 | 2) 0

For any rule, the average or Expected Cost of Misclassification (ECM) is given by

ECM = C(2 | 1)P(2 | 1)p1 + C(1 | 2P(1 | 2)p2
A reasonable classification rule should have ECM as small as possible.

Rule: The regions R1 and R2 that minimize the ECM are defined by the value of x
for which the following inequalities hold.

R1 : f1(x)
f2(x)

>
C(1 | 2)p2
C(2 | 1)p1

R2 : f1(x)
f2(x)

<
C(1 | 2)p2
C(2 | 1)p1
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If we assume f1(x) and f2(x) are multivariate normal with mean vectors μ1 and
μ2 and covariance matrices �1 and �2, respectively, then a particular object with
observation vector x0 may be classified according to the following rule (under the
assumption �1 = �2)

Allocate x0 to π1 if

(μ1 − μ2)
′�−1x0 − 1

2
(μ1 − μ2)

′�−1(μ1 + μ2) ≥ C(1 | 2)p2
C(2 | 1)p1

allocate x0 to π2 otherwise.
If we chooseC(1 | 2) = C(2 | 1) and p1 = p2, then the estimatedminimumECM

rule for two Normal populations will be as follows:
Allocate x0 to π1 if

(m1 − m2)
′Spooled − 1x0 − 1

2
(m1 − m2)

′�−1(m1 + m2) ≥ 0

where m1 and m2 are sample mean vectors of the two populations and Spooled is
pooled (combined) sample covariance matrix. Allocate x0 to π2 otherwise. The LHS
is known as the linear discriminant function. One can easily generalize the method
for more than two groups.

8.5 Data

Example 8.5.1 The Fisher’s Iris data set is a multivariate data set introduced by
Fisher (1936). It is also known as Anderson’s Iris data set because Edgar Anderson
collected the data to quantify themorphologic variation of Iris flowers of three related
species. The data set consists of 50 samples from each of three species of Iris (Iris
setosa (type-3), Iris versicolor (type-2), and Iris virginica (type-1)). Four features
were measured from each sample: the length and the width of the sepals and petals,
in centimeters (Table8.1).

We have performed k-means clustering of the data on the basis of the first four
variables, viz. sepal length, sepal width, petal length, and petal width. Choosing
k = 3, we have divided the 150 observations into three groups in order to verify
whether we can identify three groups corresponding to three species. From columns
6 and 7, it is clear that k-means method has correctly identified Iris setosa (type-3)
species for all the 50 cases, whereas there are some errors corresponding to types 1
and 2. For type 2, three cases and for type 1 fourteen cases had wrongly identified.
The summary result for k-means clustering is given below:
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Table 8.1 Results of k-means clustering for Iris data

Sepal length Sepal width Petal length Petal width Species Type k-means
Clus no.

5.1 3.5 1.4 0.2 I. setosa 3 3

4.9 3 1.4 0.2 I. setosa 3 3

4.7 3.2 1.3 0.2 I. setosa 3 3

4.6 3.1 1.5 0.2 I. setosa 3 3

5 3.6 1.4 0.2 I. setosa 3 3

5.4 3.9 1.7 0.4 I. setosa 3 3

4.6 3.4 1.4 0.3 I. setosa 3 3

5 3.4 1.5 0.2 I. setosa 3 3

4.4 2.9 1.4 0.2 I. setosa 3 3

4.9 3.1 1.5 0.1 I. setosa 3 3

5.4 3.7 1.5 0.2 I. setosa 3 3

4.8 3.4 1.6 0.2 I. setosa 3 3

4.8 3 1.4 0.1 I. setosa 3 3

4.3 3 1.1 0.1 I. setosa 3 3

5.8 4 1.2 0.2 I. setosa 3 3

5.7 4.4 1.5 0.4 I. setosa 3 3

5.4 3.9 1.3 0.4 I. setosa 3 3

5.1 3.5 1.4 0.3 I. setosa 3 3

5.7 3.8 1.7 0.3 I. setosa 3 3

5.1 3.8 1.5 0.3 I. setosa 3 3

5.4 3.4 1.7 0.2 I. setosa 3 3

5.1 3.7 1.5 0.4 I. setosa 3 3

4.6 3.6 1 0.2 I. setosa 3 3

5.1 3.3 1.7 0.5 I. setosa 3 3

4.8 3.4 1.9 0.2 I. setosa 3 3

5 3 1.6 0.2 I. setosa 3 3

5 3.4 1.6 0.4 I. setosa 3 3

5.2 3.5 1.5 0.2 I. setosa 3 3

5.2 3.4 1.4 0.2 I. setosa 3 3

4.7 3.2 1.6 0.2 I. setosa 3 3

4.8 3.1 1.6 0.2 I. setosa 3 3

5.4 3.4 1.5 0.4 I. setosa 3 3

5.2 4.1 1.5 0.1 I. setosa 3 3

5.5 4.2 1.4 0.2 I. setosa 3 3

4.9 3.1 1.5 0.2 I. setosa 3 3

5 3.2 1.2 0.2 I. setosa 3 3

5.5 3.5 1.3 0.2 I. setosa 3 3

4.9 3.6 1.4 0.1 I. setosa 3 3

4.4 3 1.3 0.2 I. setosa 3 3

(continued)
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Table 8.1 (continued)

Sepal length Sepal width Petal length Petal width Species Type k-means
Clus no.

5.1 3.4 1.5 0.2 I. setosa 3 3

5 3.5 1.3 0.3 I. setosa 3 3

4.5 2.3 1.3 0.3 I. setosa 3 3

4.4 3.2 1.3 0.2 I. setosa 3 3

5 3.5 1.6 0.6 I. setosa 3 3

5.1 3.8 1.9 0.4 I. setosa 3 3

4.8 3 1.4 0.3 I. setosa 3 3

5.1 3.8 1.6 0.2 I. setosa 3 3

4.6 3.2 1.4 0.2 I. setosa 3 3

5.3 3.7 1.5 0.2 I. setosa 3 3

5 3.3 1.4 0.2 I. setosa 3 3

7 3.2 4.7 1.4 I. versicolor 2 1

6.4 3.2 4.5 1.5 I. versicolor 2 2

6.9 3.1 4.9 1.5 I. versicolor 2 1

5.5 2.3 4 1.3 I. versicolor 2 2

6.5 2.8 4.6 1.5 I. versicolor 2 2

5.7 2.8 4.5 1.3 I. versicolor 2 2

6.3 3.3 4.7 1.6 I. versicolor 2 2

4.9 2.4 3.3 1 I. versicolor 2 2

6.6 2.9 4.6 1.3 I. versicolor 2 2

5.2 2.7 3.9 1.4 I. versicolor 2 2

5 2 3.5 1 I. versicolor 2 2

5.9 3 4.2 1.5 I. versicolor 2 2

6 2.2 4 1 I. versicolor 2 2

6.1 2.9 4.7 1.4 I. versicolor 2 2

5.6 2.9 3.6 1.3 I. versicolor 2 2

6.7 3.1 4.4 1.4 I. versicolor 2 2

5.6 3 4.5 1.5 I. versicolor 2 2

5.8 2.7 4.1 1 I. versicolor 2 2

6.2 2.2 4.5 1.5 I. versicolor 2 2

5.6 2.5 3.9 1.1 I. versicolor 2 2

5.9 3.2 4.8 1.8 I. versicolor 2 2

6.1 2.8 4 1.3 I. versicolor 2 2

6.3 2.5 4.9 1.5 I. versicolor 2 2

6.1 2.8 4.7 1.2 I. versicolor 2 2

6.4 2.9 4.3 1.3 I. versicolor 2 2

6.6 3 4.4 1.4 I. versicolor 2 2

6.8 2.8 4.8 1.4 I. versicolor 2 2

(continued)
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Table 8.1 (continued)

Sepal length Sepal width Petal length Petal width Species Type k-means
Clus no.

6.7 3 5 1.7 I. versicolor 2 1

6 2.9 4.5 1.5 I. versicolor 2 2

5.7 2.6 3.5 1 I. versicolor 2 2

5.5 2.4 3.8 1.1 I. versicolor 2 2

5.5 2.4 3.7 1 I. versicolor 2 2

5.8 2.7 3.9 1.2 I. versicolor 2 2

6 2.7 5.1 1.6 I. versicolor 2 2

5.4 3 4.5 1.5 I. versicolor 2 2

6 3.4 4.5 1.6 I. versicolor 2 2

6.7 3.1 4.7 1.5 I. versicolor 2 2

6.3 2.3 4.4 1.3 I. versicolor 2 2

5.6 3 4.1 1.3 I. versicolor 2 2

5.5 2.5 4 1.3 I. versicolor 2 2

5.5 2.6 4.4 1.2 I. versicolor 2 2

6.1 3 4.6 1.4 I. versicolor 2 2

5.8 2.6 4 1.2 I. versicolor 2 2

5 2.3 3.3 1 I. versicolor 2 2

5.6 2.7 4.2 1.3 I. versicolor 2 2

5.7 3 4.2 1.2 I. versicolor 2 2

5.7 2.9 4.2 1.3 I. versicolor 2 2

6.2 2.9 4.3 1.3 I. versicolor 2 2

5.1 2.5 3 1.1 I. versicolor 2 2

5.7 2.8 4.1 1.3 I. versicolor 2 2

6.3 3.3 6 2.5 I. virginica 1 1

5.8 2.7 5.1 1.9 I. virginica 1 2

7.1 3 5.9 2.1 I. virginica 1 1

6.3 2.9 5.6 1.8 I. virginica 1 1

6.5 3 5.8 2.2 I. virginica 1 1

7.6 3 6.6 2.1 I. virginica 1 1

4.9 2.5 4.5 1.7 I. virginica 1 2

7.3 2.9 6.3 1.8 I. virginica 1 1

6.7 2.5 5.8 1.8 I. virginica 1 1

7.2 3.6 6.1 2.5 I. virginica 1 1

6.5 3.2 5.1 2 I. virginica 1 1

6.4 2.7 5.3 1.9 I. virginica 1 1

6.8 3 5.5 2.1 I. virginica 1 1

5.7 2.5 5 2 I. virginica 1 2

(continued)
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Table 8.1 (continued)

Sepal length Sepal width Petal length Petal width Species Type k-means
Clus no.

5.8 2.8 5.1 2.4 I. virginica 1 2

6.4 3.2 5.3 2.3 I. virginica 1 1

6.5 3 5.5 1.8 I. virginica 1 1

7.7 3.8 6.7 2.2 I. virginica 1 1

7.7 2.6 6.9 2.3 I. virginica 1 1

6 2.2 5 1.5 I. virginica 1 2

6.9 3.2 5.7 2.3 I. virginica 1 1

5.6 2.8 4.9 2 I. virginica 1 2

7.7 2.8 6.7 2 I. virginica 1 1

6.3 2.7 4.9 1.8 I. virginica 1 2

6.7 3.3 5.7 2.1 I. virginica 1 1

7.2 3.2 6 1.8 I. virginica 1 1

6.2 2.8 4.8 1.8 I. virginica 1 2

6.1 3 4.9 1.8 I. virginica 1 2

6.4 2.8 5.6 2.1 I. virginica 1 1

7.2 3 5.8 1.6 I. virginica 1 1

7.4 2.8 6.1 1.9 I. virginica 1 1

7.9 3.8 6.4 2 I. virginica 1 1

6.4 2.8 5.6 2.2 I. virginica 1 1

6.3 2.8 5.1 1.5 I. virginica 1 2

6.1 2.6 5.6 1.4 I. virginica 1 1

7.7 3 6.1 2.3 I. virginica 1 1

6.3 3.4 5.6 2.4 I. virginica 1 1

6.4 3.1 5.5 1.8 I. virginica 1 1

6 3 4.8 1.8 I. virginica 1 2

6.9 3.1 5.4 2.1 I. virginica 1 1

6.7 3.1 5.6 2.4 I. virginica 1 1

6.9 3.1 5.1 2.3 I. virginica 1 1

5.8 2.7 5.1 1.9 I. virginica 1 2

6.8 3.2 5.9 2.3 I. virginica 1 1

6.7 3.3 5.7 2.5 I. virginica 1 1

6.7 3 5.2 2.3 I. virginica 1 1

6.3 2.5 5 1.9 I. virginica 1 2

6.5 3 5.2 2 I. virginica 1 1

6.2 3.4 5.4 2.3 I. virginica 1 1

5.9 3 5.1 1.8 I. virginica 1 2
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Number of clusters: 3

Number Within Average Maximum
of cluster distance distance

observations sum of from from
squares centroid centroid

Cluster1 39 25.414 0.732 1.552
Cluster2 61 38.291 0.731 1.647
Cluster3 50 15.151 0.482 1.248

We have also performed linear discriminant analysis by considering types as the
true groups.

Linear Method for Response: Type
Predictors: Sepal le Sepal wi Petal le Petal wi
Summary of Classification

Put into ....True Group....
Group 1 2 3

1 49 2 0
2 1 48 0
3 0 0 50

Total N 50 50 50

Summary of Classification with Cross-validation

Put into ....True Group....
Group 1 2 3

1 49 2 0
2 1 48 0
3 0 0 50

Total N 50 50 50
N Correct 49 48 50
Proportion 0.980 0.960 1.000

N = 150 N Correct = 147 Proportion Correct = 0.980
Squared Distance Between Groups

1 2 3
1 0.000 17.201 179.385
2 17.201 0.000 89.864
3 179.385 89.864 0.000
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Linear Discriminant Function for Group

1 2 3
Constant −103.27 −71.75 −85.21
Sepal le 12.45 15.70 23.54
Sepal wi 3.69 7.07 23.59
Petal le 12.77 5.21 −16.43
Petal wi 21.08 6.43 −17.40

Variable Pooled Means for Group

Mean 1 2 3
Sepal le 5.8433 6.5880 5.9360 5.0060
Sepal wi 3.0573 2.9740 2.7700 3.4280
Petal le 3.7580 5.5520 4.2600 .4620
Petal wi 1.1993 2.0260 1.3260 0.2460

Variable Pooled StDev for Group

StDev 1 2 3
Sepal le 0.5148 0.6359 0.5162 0.3525
Sepal wi 0.3397 0.3225 0.3138 0.3791
Petal le 0.4303 0.5519 0.4699 0.1737
Petal wi 0.2047 0.2747 0.1978 0.1054

Pooled Covariance Matrix
Sepal le Sepal wi Petal le Petal wi
Sepal le 0.26501
Sepal wi 0.09272 0.11539
Petal le 0.16751 0.05524 0.18519
Petal wi 0.03840 0.03271 0.04267 0.04188
Here we see that only three observations are wrongly classified. The corresponding
probabilities are given by

Observation True Pred Group Probability
Group Group Predicted

71 ** 2 1 1 0.75
2 0.25
3 0.00

84 ** 2 1 1 0.86
2 0.14
3 0.00

134 ** 1 2 1 0.27
2 0.73
3 0.00
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Example 8.5.2 The following data are related to a survey on environmental pollution
level. The following variables were observed in suitable units at 111 selected places.
The four variables under study were Ozone content, Radiation, Temperature, and
Wind speed in some proper units. We have performed hierarchical clustering with
Euclidian distance and single linkage. The data set as well as the cluster membership
is shown in the following table.

The summary of results and the dendrogram are given below the table. By con-
sidering similarity level at 93, six clusters were found of which three (4, 5, and 6)
may omitted as outliers containing 2, 1, and 1 observations. Hence clusters 1, 2, and
3 are the main clusters. Figures corresponding to radiation, temperature, wind speed,
ozone content and H-cluster number of 111 places.

Table 8.2 Results of hierarchical clustering for pollution data

Radiation Temperature Wind speed Ozone content H-cluster number

190 67 7.4 41 1

118 72 8 36 2

149 74 12.6 12 2

313 62 11.5 18 1

299 65 8.6 23 1

99 59 13.8 19 2

19 61 20.1 8 3

256 69 9.7 16 1

290 66 9.2 11 1

274 68 10.9 14 1

65 58 13.2 18 3

334 64 11.5 14 1

307 66 12 34 1

78 57 18.4 6 3

322 68 11.5 30 1

44 62 9.7 11 3

8 59 9.7 1 3

320 73 16.6 11 1

25 61 9.7 4 3

92 61 12 32 2

13 67 12 23 3

252 81 14.9 45 1

223 79 5.7 115 1

279 76 7.4 37 1

127 82 9.7 29 2

291 90 13.8 71 1

(continued)



8.5 Data 91

Table 8.2 (continued)

Radiation Temperature Wind speed Ozone content H-cluster number

323 87 11.5 39 1

148 82 8 23 2

191 77 14.9 21 1

284 72 20.7 37 1

37 65 9.2 20 3

120 73 11.5 12 2

137 76 10.3 13 2

269 84 4 135 4

248 85 9.2 49 1

236 81 9.2 32 1

175 83 4.6 64 1

314 83 10.9 40 1

276 88 5.1 77 1

267 92 6.3 97 1

272 92 5.7 97 1

175 89 7.4 85 1

264 73 14.3 10 1

175 81 14.9 27 1

48 80 14.3 7 3

260 81 6.9 48 1

274 82 10.3 35 1

285 84 6.3 61 1

187 87 5.1 79 1

220 85 11.5 63 1

7 74 6.9 16 3

294 86 8.6 80 1

223 85 8 108 1

81 82 8.6 20 3

82 86 12 52 3

213 88 7.4 82 1

275 86 7.4 50 1

253 83 7.4 64 1

254 81 9.2 59 1

83 81 6.9 39 3

24 81 13.8 9 3

77 82 7.4 16 3

255 89 4 122 4

229 90 10.3 89 1

207 90 8 110 1

(continued)
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Table 8.2 (continued)

Radiation Temperature Wind speed Ozone content H-cluster number

192 86 11.5 44 1

273 82 11.5 28 1

157 80 9.7 65 1

71 77 10.3 22 3

51 79 6.3 59 5

115 76 7.4 23 2

244 78 10.9 31 1

190 78 10.3 44 1

259 77 15.5 21 1

36 72 14.3 9 3

212 79 9.7 45 1

238 81 3.4 168 6

215 86 8 73 1

203 97 9.7 76 1

225 94 2.3 118 1

237 96 6.3 84 1

188 94 6.3 85 1

167 91 6.9 96 1

197 92 5.1 78 1

183 93 2.8 73 1

189 93 4.6 91 1

95 87 7.4 47 3

92 84 15.5 32 3

252 80 10.9 20 1

220 78 10.3 23 1

230 75 10.9 21 1

259 73 9.7 24 1

236 81 14.9 44 1

259 76 15.5 21 1

238 77 6.3 28 1

24 71 10.9 9 3

112 71 11.5 13 2

237 78 6.9 46 1

224 67 13.8 18 1

27 76 10.3 13 3

238 68 10.3 24 1

201 82 8 16 1

238 64 12.6 13 1

14 71 9.2 23 3

(continued)
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Table 8.2 (continued)

Radiation Temperature Wind speed Ozone content H-cluster number

139 81 10.3 36 2

49 69 10.3 7 3

20 63 16.6 14 3

193 70 6.9 30 1

191 75 14.3 14 1

131 76 8 18 2

223 68 11.5 20 1

Fig. 8.1 Dendrogram of pollution data

Number of main clusters: 3

Number Within Average Maximum
of cluster distance distance

observations sum of from from
squares centroid centroid

Cluster1 71 202337.219 48.851 101.003
Cluster2 12 5151.429 18.929 35.732
Cluster3 24 26269.208 30.505 58.654

Cluster Centroids

Variable Cluster1 Cluster2 Cluster3 Grand centroid
Radiatio 240.7606 123.9167 46.6250 184.8018
Temperat 80.1831 73.5833 71.9167 77.7928
Wind spe 9.6577 10.2583 11.5292 9.9387
Ozone Co 49.2535 22.1667 17.7500 42.0991
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The dendrogram of the pollution data is shown below. The centroids of the first
three clusters are widely separated corresponding to all the variables; the 24 places
falling in cluster 3 may be considered to be least polluted, whereas the 71 places
falling in cluster 1 are most polluted (Fig. 8.1).
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Chapter 9
Principal Component Analysis

9.1 Introduction

Under the high-dimensional setup with p variables, the problem that often arises is
the critical nature of the correlation or covariance matrix. When p is moderately or
very large it is generally difficult to identify the true nature of relationship among the
variables as well as observations from the covariance or correlation matrix. Under
such situations, a very commonway to simplify the matter is to reduce the dimension
by considering only those variables (components) those are truly responsible for the
overall variation.

Principal component analysis (PCA) is a dimension reduction procedure. PCA
was developed in 1901 by Karl Pearson, as an analogue of the principal axis theo-
rem in mechanics. It was later independently developed by Harold Hotelling (1933,
1936). Several authors considered PCA in different forms (Joliffe 1982, 2002). There
are several case studies and applications (Jeffers 1967; Chattopadhyay and Chat-
topadhyay 2006). The method is useful when we have a large number of variables,
and some variables are of less or no importance. In this case, redundancy means
that some of the variables are highly correlated with one another, possibly because
they are measuring the same phenomenon. Because of this redundancy, it should be
possible to reduce the observed variables into a smaller number of principal compo-
nents (derived variables) that will account for most of the variance in the observed
variables.

Being a dimension reduction technique, principal component analysis has similar-
itieswith exploratory factor analysis. The steps followedwhen conducting a principal
component analysis are almost the same as those of exploratory factor analysis. How-
ever, there are significant conceptual differences between the reduction procedure
that gives a relatively small number of components those account for most of the
variance in a set of observed variables. In summary, both factor analysis and principal
component analysis have important roles to play in social science research, but their
conceptual foundations are quite different.

© Springer Nature Singapore Pte Ltd. 2018
S. P. Mukherjee et al., Statistical Methods in Social Science Research,
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More recently, Independent component analysis (ICA) has been identified as a
strong competitor for principal component analysis and factor analysis. ICA finds
a set of source data that are mutually independent (not only with respect to the
second moment), but PCA finds a set of data that are mutually uncorrelated and
the principal components become independent only under Gaussian setup. ICA was
primarily developed for non-Gaussian data in order to find independent components
responsible for a larger part of the variation. ICA separates statistically independent
original source data from an observed set of data mixtures.

9.1.1 Method

In PCA, primarily1 it is not necessary to make any assumption regarding the under-
lying multivariate distribution but if we are interested in some inference problems
related to PCA then the assumption of multivariate normality is necessary (Chat-
topadhyay andChattopadhyay 2014). The eigenvalues and eigenvectors of the covari-
ance or correlation matrix are the main contributors of a PCA. Of course, the eigen-
values of covariance and correlationmatrices are different and they coincidewhenwe
work with standardized values of the variables. So the decision whether one should
start work covariance or correlation matrix is important. Normally, when all the vari-
ables are of equal importance, one may start with the correlation matrix. The eigen-
vectors determine the directions of maximum variability, whereas the eigenvalues
specify the variances. In practice, decisions regarding the quality of the principal com-
ponent approximation should be made on the basis of eigenvalue–eigenvector pairs.
In order to study the sampling distribution of their estimates, the multivariate nor-
mality assumptions became necessary as otherwise it is too difficult. Principal com-
ponents are a sequence of projections of the data. The components are constructed in
such a way that they are uncorrelated and ordered in variance. The components of a
p-dimensional data set provide a sequence of best linear approximations. As only a
few of such linear combinations may explain a larger percentage of variation in the
data, one can take only those components instead of p variables for further analysis.

A PCA is concerned with explaining the variance–covariance structure through
a few linear combinations of the original variables. Its general objectives are data
reduction and interpretation. Reduce the number of variables from p to k < (kp).
Let the random vector X ′ = (X1 . . . X p) have the covariance matrix � (or correla-
tion matrix R) with ordered eigenvalues λ1 ≥ λ2 · · · ≥ λp ≥ 0 and corresponding
eigenvectors e′

1, e
′
2, . . . , e

′
p, respectively.

1This section draws from one of the authors’ published work, ‘Statistical Methods for Astronomical
Data Analysis,’ authored by Asis Kumar Chattopadhyay and Tanuka Chattopadhyay, and published
in 2014 by Springer Science+Business Media New York.
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Consider the linear combinations

Y1 = l11X1 + l21X2 + · · · + l p1X p = e′
1X

Y2 = l12X1 + l22X2 + · · · + l p2X p = e′
2X

.

.

Yp = l1p X1 + l2p X2 + · · · + l pp X p = e′
p X

Then we have the following result:

Result: Let X ′ = (X1 . . . X p) have covariancematrix� with eigenvalue–eigenvector
pairs (λ1, e1) . . . (λp, ep) where λ1 ≥ λ2 · · · ≥ .λp ≥ 0.

Let Y1 = e′
1X,Y2 = e′

2X . . . Yp = e′
p X.

Then
var(Yi ) = λi (i = 1, 2, . . . p) and

σ11 + σ22 · · · + σpp =
∑p

1
var(Xi)

= λ1 + · · · + λp

=
∑p

1
var(Y i)

Here Y1,Y2, . . . ,Yp are called principal components. In particular, Y1 is the first
principal component (having the largest variance), Y2 is the second principal com-
ponent (having the second largest variance), and so on.

(For proof of the above result, one may consult any standard textbook.)

Here instead of original p variables X1 . . . X p, only a few principal components
Y1,Y2, . . . ,Yk(k < p) are used which explains maximum part of the total variation.
There are several methods to find the optimum value of k.

The specific aim of the analysis is to reduce a large number of variables to a
smaller number of components by retaining the total variance (sum of the diagonal
components of the covariance matrix) almost same among the observations. The
analysis therefore helps us to determine the optimum set of artificial variables (viz.
linear combinations) explaining the overall variations in the nature of objects.

Many criteria have been suggested by different authors for deciding how many
principal components (k) to retain. Some of these criteria are as follows:

1. Include just enough components to explain some arbitrary amount (say 80%) of
the total variance which is the sum of the variances (diagonal elements of the
covariance matrix) of all the variables.

2. Exclude those principal componentswith eigenvalues below the average. For prin-
cipal components calculated from the correlation matrix, this criterion excludes
components with eigenvalues less than 1.



98 9 Principal Component Analysis

3. Use of the screen plot (plotting eigenvalues against components) technique.2

Example9.1.1 (http://openmv.net/) The following data set gives the relative con-
sumption of certain food items inEuropean andScandinavian countries. The numbers
represent the percentage of the population consuming that food type corresponding
to 15 countries and 9 food types. As there are 9 food types corresponding to only 15
countries, it is necessary to reduce the dimension in order to search for major food
types.

Instant Powder
Country coffee Tea Biscuits soup
Germany 49 88 57 51
Italy 10 60 55 41
France 42 63 76 53
Holland 62 98 62 67
Belgium 38 48 74 37
Luxembourg 61 86 79 73
England 86 99 91 55
Portugal 26 77 22 34
Austria 31 61 29 33
Switzerland 72 85 31 69
Denmark 17 92 66 32
Norway 17 83 62 51
Finland 12 84 64 27
Spain 40 40 62 43
Ireland 52 99 80 75

Frozen
Country Potatoes fish Apples Oranges Butter
Germany 21 27 81 75 91
Italy 2 4 67 71 66
France 23 11 87 84 94
Holland 7 14 83 89 31
Belgium 9 13 76 76 84
Luxembourg 7 26 85 94 94
England 17 20 76 68 95
Portugal 5 20 22 51 65
Austria 5 15 49 42 51
Switzerland 17 19 79 70 82
Denmark 11 51 81 72 92
Norway 17 30 61 72 63
Finland 8 18 50 57 96
Spain 14 23 59 77 44
Ireland 2 5 57 52 97

2A significant part of ‘Chattopadhyay and Chattopadhyay (2014). Statistical methods for Astro-
nomical Data Analysis, Springer Series in Astrostatistics, Springer’ is reproduced in this part.

http://openmv.net/
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Table 9.1 Eigen analysis of the correlation matrix

Components PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Eigenvalue 3.4129 1.5591 1.3412 1.0164 0.7587 0.3294 0.2633 0.2027 0.1162

Proportion 0.379 0.173 0.149 0.113 0.084 0.037 0.029 0.023 0.013

Cumulative 0.379 0.552 0.701 0.814 0.899 0.935 0.965 0.987 1.000

Table 9.2 Coefficients of 15 variables in 9 principal components

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Instant 0.383 −0.367 −0.035 −0.247 −0.335 −0.360 −0.573 0.140 0.258

Tea 0.241 −0.229 0.596 −0.326 −0.274 0.000 0.441 0.304 0.256

Biscuits 0.368 0.062 0.069 0.571 −0.249 −0.650 0.135 −0.058 −0.155

Powder s 0.389 −0.467 −0.053 −0.170 −0.047 0.225 0.119 −0.561 −0.467

Potatoes 0.284 0.412 −0.078 −0.219 0.667 −0.144 0.476 −0.058 −0.032

Frozen f 0.079 0.575 0.305 −0.452 −0.298 −0.155 −0.377 −0.248 −0.221

Apples 0.465 0.174 −0.205 0.057 −0.108 0.360 −0.123 0.632 −0.389

Oranges 0.394 0.208 −0.424 −0.013 −0.340 0.201 0.058 −0.258 0.629

Butter 0.224 0.134 0.561 0.471 0.297 0.427 −0.240 −0.197 0.169

From the screen plot and Table9.1, it is clear that 4 components have variances (i.e.,
eigenvalues of the correlation matrix) greater than one and these four components
explainmore than 80% of the total variation, i.e., the sum of the variances of all
the variables. Hence, one can work with four principal components instead of the
original nine variables.

From Table9.2, it is clear that most of the variables have similar importance in
all the first four components so that it is difficult to associate a particular component
to a subset of variables. So here it is not possible to identify the physical nature of
the components. This feature is generally true for principal component analysis. In
order to find inherent factors, one can take help of factor analysis if the nature of the
covariance matrix admits (Figs. 9.1 and 9.2).

9.1.2 The Correlation Vector Diagram (Biplot, Gabriel 1971)

A matrix of rank 2 can be displayed as a biplot consisting of a vector for each row
and a vector for each column, chosen so that each element of the matrix is exactly the
inner product of the vectors corresponding to its row and its column (Gabriel 1971).
If a matrix is of higher rank, one may display it approximately by a biplot of a matrix
of rank 2 that approximates the original matrix. In PCA, a biplot can show inter-unit
distances and indicate the clustering of units, as well as displaying the variances and
correlations of the variables.
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Fig. 9.1 Screen plot used to decide about the number of significant principal components. The
components with eigenvalues greater than 1 are usually taken as significant

Fig. 9.2 Biplot for the data used in Example9.1.1. The vector lengths represent variances of
corresponding variables, and the angles show correlations of the variables (smaller angles indicate
higher correlations). Dot points indicate the positions of the 15 countries with respect to their first
and second component values. The origin represents the average value for each variable; that is, it
represents the object that has an average value in each variable

Any matrix of observations y of order mXn can be written by singular value
decomposition as

y = �r
1λi piqi

′(λ1 ≥ λ2 · · · ≥ λr )
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where r is the rank of the matrix y and λi , pi , and q ′
i are the singular value, singular

column, and singular row, respectively. Then by the method of least-squares fitting
a matrix of rank 2, an approximation of y is given by

y = �2
1λi piqi

′

and the corresponding measure of goodness of fit is given by

ρ(2) = λ2
1 + λ2

2

σr
1λi

2

If ρ(2) is near to 1, then such a biplot will give a good approximation to y. If we
denote by

SmXm = (1/n) y′ y = (si j ) = variance–covariance matrix and
RmXm = (ri j ) = correlation matrix

then it can be shown that

ynXm ∼ GnX2H ′2Xm

where

GnX2 = (p1′ p2′)
√
n = (gnX11 gnX12 )

and

HmX2 =
(

1√
n

)
(λ1q1λ2q2) = (hmX1

1 hmX1
2 ).

Further,
si j ∼ h′

i h j

s2j ∼ ||h j ||2

ri j ∼ cos(hih j ).

9.2 Properties of Principal Components

In PCA, the first component extracted explains themaximumamount of total variance
in the observed variables. Under some conditions, this means that the first component
will be correlated with at least some of the observed variables. It may be correlated
with many. The second component will have two important characteristics. First,
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this component explains a maximum amount of variance in the data set that was not
accounted for by the first component. Again under some conditions, this means that
the second component will be correlated with some of the observed variables that
did not display strong correlations with the first component.

The second characteristic of the second component is that it will be uncorrelated
(orthogonal) with the first component. The remaining components that are extracted
in the analysis display the same two characteristics: Each component accounts for a
maximum amount of variance in the observed variables which was not accounted for
by the preceding components, and is uncorrelated with all of the preceding compo-
nents. A principal component analysis proceeds in this fashion, with each new com-
ponent accounting for progressively smaller and smaller amounts of variance (this
is why only the first few components are usually retained and interpreted). When
the analysis is complete, the resulting components will display varying degrees of
correlation with the observed variables (https://support.sas.com/publishing/pubcat/
chaps/55129.pdf), but are completely uncorrelated with one another.

Since no correlation does not generally imply that the components are indepen-
dent, principal components are not generally independent except for normal distribu-
tion under which zero correlation implies independence. This is the reason why PCA
works more successfully for Gaussian data. For non-Gaussian data, the independent
component analysis is a better option.
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Chapter 10
Factor Analysis

10.1 Factor Analysis

Factor analysis (Chattopadhyay andChattopadhyay 2014) is a statisticalmethod used
to study the dimensionality of a set of variables. In factor analysis, latent variables
represent unobserved constructs and are referred to as factors or dimensions. Factor
analysis attempts to identify underlying variables or factors that explain the pattern
of correlations within a set of observed variables. Factor analysis is often used in
data reduction to identify a small number of factors that explain most of the variance
that is observed in a much larger number of manifest variables.

Suppose the observable random vector X with p components has mean vector μ
and covariancematrix�. In the factor model, we assume that X is linearly dependent
upon a few unobservable random variables F1, F2 . . . Fp called common factors and
p additional sources of variation∈1,∈2, . . . ,∈p called the errors (or specific factors).
Then the factor model is

p×1
X = p×1

μ + p×m
L

m×1
F + p×1∈ (10.1.1)

X1 − μ1 = l11F1 + l12F2 + · · · + l1mFm+ ∈1

X2 − μ1 = l21F1 + l22F2 + · · · + l2mFm+ ∈2
...

X p − μp = l p1F1 + l p2F2 + · · · + l pm Fm+ ∈p

The coefficients li j s are called the loading of the i th variable on the j th factor so
the matrix L is the matrix of factor loadings. Here ∈i is associated only with the i th
response Xi . Here the p deviations X1 − μ1 . . . X p − μp are expressed in terms of

A significant part of ‘Chattopadhyay and Chattopadhyay (2014). Statistical Methods for Astro-
nomical Data Analysis, Springer Series in Astrostatistics, Springer Science+Business Media New
York’ is reproduced in this chapter.

© Springer Nature Singapore Pte Ltd. 2018
S. P. Mukherjee et al., Statistical Methods in Social Science Research,
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p + m random variables F1, F2, . . . , Fm,∈1, . . . ∈p which are unobservable (but in
multivariate regression independent variables can be observed).

With same additional assumption on the random vectors F and ∈, the model w

implies certain covariance relationships which can be checked.
We assume that

E(P) = 0m×1 cov(F) = E(FP ′) = I m×m

E(∈) = 0p×1 cov(∈) = E(∈∈′) = ψ =
⎛
⎝

ψ1 0 . . . 0
0 ψ2 . . . 0
0 0 . . . ψp

⎞
⎠

and cov(∈, F) = E(∈, F) = 0p×m (10.1.2)

The model X − μ = LF+ ∈ is linear in the common factors. If the p response of
X are related to the underlying in factors in a nonlinear form [X1 − μ1 = F1F3+ ∈1]
Then the covariance structure LL ′ + ψ may not be adequate. The assumption of
linearity is inherent here.
These assumption and the relation (10.1.1) constitute the orthogonal factor model.

The orthogonal factor model implies a covariance structure for X .

Here (X − μ)(X − μ′) = (LF+ ∈)(LF+ ∈)′

= (LF+ ∈)((LF)′+ ∈′)
= LF(LF)′+ ∈ (LF)′ + LF ∈′ + ∈∈′

= LFF ′L ′+ ∈ F ′L ′ + LF ∈′ + ∈∈′

� = covariance matrix of X

= E(X − μ)(X − μ)′

= LE(FF ′)L ′ + E(∈ F)′L ′ + LE(F ∈′) + E(∈∈′)
= L I L ′ + ψ = LL ′ + ψ

Again (X − μ)F ′ = (LF+ ∈)F ′ = LFF ′+ ∈ F ′

or, cov(X, F) = E(X − μ)F ′ = E(LF+ ∈)F ′ = LE(FF ′) + E(∈ F ′) = L

Now � = LL ′ + ψ implies

var(Xi ) = li12 + · · · + lim2 + ψi

cov(Xi Xk) = li1lk1 + · · · + limlkm

}
(10.1.3)

cov(XF) = L ⇒ cov(Xi Fj ) = li j
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⇒ V (Xi ) = δi i = li1
2 + · · · + lim

2 + ψi

Let i th communality = hi
2 = li1

2 + · · · + lim
2

Then δi i = hi 2 + ψi (i = 1 . . . p)
hi

2 = sum of squares of loadings of i th variable on the m common factors.

Given a random sample of observations
b×1
x1 , x2 . . .

p×1
xp . The basic problem is to decide

whether � can be expressed in the form (10.1.3) for reasonably small value of m,
and to estimate the elements of L and ψ.

Here the estimation procedure is not so easy. Primarily, we have from the sample
data estimates of the p(p+1)

2 distinct elements of the upper triangle of � but on the
RHSof (10.1.3)we have pm + p parameters, pm for L and p forψ. The solutionwill
be indeterminate unless p(p+1)

2 − p(m + 1) ≥ 0 or p > 2m. Even if this condition
is satisfied L is not unique.

Proof Let
m×m
T be any ⊥ matrix so that T T ′ = T ′T = I

Then (10.1.1) can be written as

X − μ = LF+ ∈= LT T ′F+ ∈= L∗F∗+ ∈ (10.1.4)

where L∗ = LT and F∗ = T ′F

Since E(F∗) = T ′E(F) = 0

and cov(F∗) = T ′Cov(F)T = T ′T = I

It is impossible to distinguish between loadings L and L∗ on the basis of the observa-
tions on X . So the vectors F and F∗ = T ′F have the same statistical properties and
even if the loadings L and L∗ are different, they both generate the same covariance
matrix �, i.e.,

� = LL ′ + ψ = LT T ′L ′ + ψ = L∗L∗′ + ψ (10.1.5)

The above problem of uniqueness is generally resolved by choosing an orthogonal
rotation T such that the final loading L satisfies the condition that L ′ψ−1L is diagonal
with positive diagonal elements. This restriction requires L to be of full rankm. With
a valid ψ viz. one with all positive diagonal elements it can be shown that the above
restriction yields a unique L . �
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10.1.1 Method of Estimation

Given n observations vectors x1 . . . xn on p generally correlated variables, factor
analysis seeks to verify whether the factor model (10.1.1) with a small number of
factors adequately represent the data.

The sample covariance matrix is an estimator of the unknown covariance matrix
�. If � appears to deviate significantly from a diagonal matrix, then a factor model
can be used and the initial problem is one of estimating the factor loadings li j and
the specific variances. ψi .

Principal Component Method1

Let � has eigenvalue–eigenvector pairs (λi , ei ) with λ1 ≥ λ2 ≥ · · · λp ≥ 0. Then
by specified decomposition

� = λ1e1e1
′ + λ2e2e2

′ + · · · + λpepep
′

= (
√

λ1e1 · · · √λpep)

⎛
⎜⎝

√
λ1e1′
...√

λpep ′

⎞
⎟⎠ e1

√
λ1 · · · ep

√
λp (10.1.6)

= p×p
L

p×p

L ′ + 0p×p

[in (10.1.6) m = p and j th column of L = √
λ j e j ].

Apart from the scale factor
√

λ j , the factor loadings on the j th factor are the ppn

j th principal component.
The approximate representation assumes that the specific factors ∈ are of minor

importance and can be ignored in factoring �. If specific factors are included in the
model, their variances may be taken to be the diagonal elements of � − LL ′.

Allowing for specific factors, the approximation becomes

� = LL ′ + ψ

= (
√

λ1e1
√

λ2e2 · · ·√λmem)

⎛
⎜⎜⎜⎝

√
λ1e1′√
λ2e2′
...√

λmem ′

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

ψ1 0 . . . 0
0 ψ2 . . . 0
...

...
...

...

0 0 . . . ψp

⎞
⎟⎟⎟⎠ (10.1.7)

where m ≤ p.
(we assume that last p − m eigenvalues are small)

and ψi i = δi i −
m∑
j=1

li j
2 for i = 1 . . . p.

1A significant part of ‘Chattopadhyay and Chattopadhyay (2014). Statistical methods for Astro-
nomical Data Analysis, Springer Series in Astrostatistics, Springer’ is reproduced in this part.
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For the principal component solution, the estimated factor loadings for a given
factor do not change as the number of factors is increased. If m = 1

L =
(√

λ1ê1
)

if m = 2

L =
(√

λ̂1ê1

√
λ̂2ê2

)

where (λ̂1, ê1) and (λ̂2, ê2) are the first two eigenvalue–eigenvector pairs for S (or R).
By the definition of ψ̂i , the diagonal elements of S are equal to the diagonal

elements of L̂ L̂
′ + ψ. How to determine m?

The choice of m can be based on the estimated eigenvalues.
Consider the residual matrix S − (LL ′ + ψ)

Here the diagonal elements are new and if the off-diagonal elements are also small
we may take that particular value of m to be appropriate.

Analytically, we chose that m for which

Sum of squared entries of (S − (LL ′ + ψ)) ≤ λ̂2
m+1 + · · · + λ̂2

p (10.1.8)

Ideally, the contribution of the first few factors to the sample variance of the
variables should be large. The contribution to the sample variance sii from the first
common factor is lii 2. The contribution to the total sample variance s11 + · · · spp =
h(S) from the first common factor is

l̂211 + l̂221 + · · · + l̂2p1 = (
√

λ1ê1)
′(
√

λ1ê1) = λ̂1

Since the eigenvectors ê1 has unit length.

In general,

⎛
⎝

Propertion of total
sample variance due

to the factor

⎞
⎠ =

⎧⎪⎨
⎪⎩

λ̂ j

s11+···+spp
for a factor analysis of S

λ̂ j

p for a factor analysis of R

(10.1.9)

Criterion (10.1.9) is frequently used as a heuristic device for determining the appro-
priate number of common factors. The value of m is gradually increased until a
suitable proportion of the total sample variance has been explained.

Other Rules Used in Package

No. of eigenvalue of R greater than one (when R is used)
No. of eigenvalue of S that are positive (when S is used).
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10.1.2 Factor Rotation

If L̂ be the p × m matrix of estimated factor loadings obtained by any method, then

L∗ = L̂T where T T ′ = T ′T = I

is a p × m matrix of rotated loadings.
Moreover, the estimated covariance (or correlation) matrix remains unchanged

since
L̂ L̂ ′ + ψ̂ = L̂T T ′ L̂ ′ + ψ̂ = L̂∗ L̂∗′ + ψ̂

The above equation indicates that the residualmatrix Sn − L̂ L̂ ′ − ψ̂ = Sn − L̂∗ L̂∗′ −
ψ̂ remains unchanged. Moreover, the specific variances ψ̂i and hence the communi-
cation ĥ2i are unaltered. Hence, mathematically it is immaterial whether L̂ or L∗ is
obtained.

Since the original loadings may not be readily interpretable, it is usual practice to
rotate them until a ‘simple structure’ is achieved.

Ideally, we should like to see a pattern of loadings of each variable loads highly
on a single factor and has small to moderate loading on the remaining factors.

The problem is to find an orthogonal rotation which compounds to a ‘simple
structure.’

There can be achieved if often rotation the orthogonality of the factor still exists.
This is maintained of we perform orthogonal rotation. Among these (1) Variance
rotation, (2) Quartimax rotation, (3) Equamax rotation are important.

Oblique rotation does not ensure the orthogonality of factors often rotation. There
are several algorithms like oblimax, Quartimax.

10.1.3 Varimax Rotation

Orthogonal Transformation on L

L∗ = LT T T ′ = I

L∗ is thematrix of orthogonally rotated loadings and let d j =
p∑

i=1

l∗2i j j = 1 . . .m

Then the following expression is maximized

m∑
j=1

{
p∑

i=1

(
l∗4i j − d j

2/p
)}
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Such a procedure tries to give either large (in absolute value) or zero values in
the columns of Ł∗. Hence, the procedure tries to produce factors with either a stray
association with the responses or no association at all.

The communality

hi
2 =

m∑
j=1

l∗2i j =
m∑
j=1

li j
2 remains constant under rotation.

10.2 Quartimax Rotation

The factor pattern is simplified by forcing the variables to correlate highly with one
main factor (the so-called G-factor of 1Q studies) and very little with remaining
factors. Here all variables are primarily associated with a single factor.
Interpretation of results obtained from factor analysis. It is usually difficult to inter-
pret. Many users should significant coefficient magnitudes on many of the retained
factors (coefficient greater than —.60— are often considered large and coefficients
of —0.35— are often considered moderate). And especially on the first factor.

For good interpretation, factor rotation is necessary. The objective of the rotation
is to achieve the most ‘simple structure’ though the manipulation of factor pattern
matrix.

The most simple structure can be explained in terms of five principles of factor
rotation.

1. Each variable should have at least one zero (small) loadings.
2. Each factor should have a set of linearly independent variables where factor

loadings are zero (small).
3. For every pair of factors, there should be several variables where loadings are

zero (small) for one factor but not the other.
4. For every pair of factors, a large proportion of variables should have zero (small)

loading on both factors whenever more than about four factors are extracted.
5. For every pair of factors, there should only be a small number of variables with

nonzero loadings on both.

In orthogonal rotation,

(1) Factors are perfectly uncorrelated with one another.
(2) Less parameters are to be estimated.

10.3 Promax Rotation

Factors are allowed to be correlated with one another.

Step I. Rotate the factors orthogonally.
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Step II. Get a target matrix by raising the factor coefficients to an exponent (3 or
4). The coefficients secure smaller but absolute distance increases.
Step III. Rotate the original matrix to a best-fit position with the target matrix.

Here many moderate coefficients quickly approaches zero [.3 × .3 = .09] then the
large coefficients (≥ .6).

Example 10.1 Consider the data set related to the relative consumption of certain
food items in European and Scandinavian countries considered in the chapter of
principal component analysis.

If we do factor analysis with varimax rotation, then the output is as follows:
Rotated Factor Loadings and Communalities Varimax Rotation

Variable Factor1 Factor2 Factor3 Factor4 Communality
coffee 0.336 0.807 0.018 −0.095 0.774
Tea −0.233 0.752 0.330 0.370 0.866

Biscuits 0.502 0.124 0.712 −0.177 0.806
Powder 0.317 0.856 0.047 −0.230 0.889
Potatoes 0.595 0.047 0.060 0.485 0.595

Frozen fish 0.118 −0.100 0.050 0.918 0.869
Apples 0.832 0.284 0.251 0.097 0.846
Oranges 0.903 0.148 0.004 0.036 0.839
Butter −0.004 0.089 0.900 0.172 0.847
Variance 2.3961 2.0886 1.4969 1.3480 7.3296
% Var 0.266 0.232 0.166 0.150 0.814

Factor Score Coefficients

Variable Factor1 Factor2 Factor3 Factor4
coffee 0.038 0.408 −0.144 −0.040
Tea −0.311 0.456 0.119 0.319

Biscuits 0.165 −0.141 0.506 −0.252
Powder 0.026 0.426 −0.109 −0.144
Potatoes 0.253 −0.047 −0.089 0.331

Frozen fish 0.006 −0.019 −0.072 0.692
Apples 0.339 −0.008 0.045 0.006
Oranges 0.431 −0.064 −0.129 −0.026
Butter −0.132 −0.080 0.674 0.029

We see that according to percentage of variation about 80% variation is explained by
first four components (as in case of PCA). But here the advantage id unlike PCA we
can physically explain the factors. According to rotated factor loading, we can say
that the first factor is composed of ‘apples, oranges, and potatoes,’ similarly the other
three factors are composed of ‘coffee, tea, and powder soup,’ ‘butter and biscuits,’
and ‘potatoes and frozen fish,’ respectively.

Except Potato there is no overlapping, and the groups are well defined and may
correspond to types of customers preferring ‘fruits,’ ‘hot drinks,’ ‘snacks’ and ‘pro-
teins, vitamins, and minerals.’
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The most significant difference between PCA and factor analysis is regarding
the assumption of an underlying causal structure. Factor analysis assumes that the
covariation among the observed variables is due to the presence of one or more
latent variables known as factors that impose causal influence on these observed
variables. Factor analysis is used when there exit some latent factors which impose
causal influence on the observed variables under consideration. Exploratory factor
analysis helps the researcher identify the number and nature of these latent factors.
But principal component analysis makes no assumption about an underlying causal
relation. It is simply a dimension reduction technique.
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Chapter 11
Multidimensional Scaling

11.1 Introduction

Multidimensional scaling (MDS) is a method to display (visualize) relative posi-
tions of several objects (subjects) in a two- or (three-)dimensional Euclidean
space, to explore similarities (dissimilarities) revealed in data pertaining to the
objects/subjects. Such similarities (dissimilarities) refer to pairs of entities, as judged
objectively in terms of physical parameters or assessed subjectively in terms of opin-
ions. An MDS algorithm starts with a matrix of item–item similarities and ends in
assigning a location to each item in a multidimensional space. With two or three
dimensions, the resulting locations may be displayed in a graph or 3D visualization.
Also known as Torgerson scaling, MDS is a set of statistical techniques used in
information visualization.

Multidimensional scaling (MDS) is not much of an analytical tool, but is quite
useful for visualizing distances/differences among, say N units with p characteristics
noted for each, starting with an n × n matrix input based on ordinal or cardinal
measures of similarities or dissimilarities (considering the p characteristics) and
ending up in a two- or three-dimensional representation of a unit as a point.

InMDS, the entities could be different cities located at different points on the non-
Euclidean surface of the earth, and flying or driving distances fromone city to another
could indicate dissimilarities among pairs of cities. They could be manufactured
products, or services, or handwriting, or softwares, or even modes of presentation,
or participants in an essay competition, or any other entities which can be presented
to a judge or a panel of judges who can rate or rank these entities or assign scores
in respect of some feature(s) or trait(s) which reveal similarities or distances among
the entities.

In some sense, multidimensional scaling, introduced by Torgerson, may be
regarded as an extension of product scaling introduced by another psychologist
Thurstone. In product scaling, we consider a number k of concrete entities which
are presented pair-wise to a panel of n judges, each of whom is required to prefer
one entity within a pair to the other in terms of some prespecified features. The final

© Springer Nature Singapore Pte Ltd. 2018
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data appear as a k × k matrix in which the (i, j)th element is pi j = proportion of
judges preferring entity j to entity i. Using the Law of Comparative Judgment and
the method of discriminal dispersion, a scale value is finally found out for each entity
so that their relative positions can be shown as points on a real line. In multidimen-
sional, the entities are displayed as points in a two- (or at most three-) dimensional
Euclidean plane.

Torgerson proposed the first MDS to help understand people’s judgment of the
similarity of members in assessment of objects. Currently, MDS finds applications
in diverse fields such as marketing, sociology, physics, political science, and biol-
ogy. Potential customers are asked to compare pairs of products and make judgments
about their similarity.Whereas other techniques (such as factor analysis, discriminant
analysis, or conjoint analysis) obtain underlying dimensions from responses to prod-
uct attributes identified by the researcher, MDS obtains the underlying dimensions
from respondents’ judgments about the similarity of products. This is an important
advantage. t does not depend on researchers’ judgments. The underlying dimen-
sions come from respondents’ judgments about pairs of products. Because of these
advantages, MDS is the most common technique used in perceptual mapping.

MDS pictures the structure of a set of objects from data that represent or approx-
imate the distances between pairs of the objects. The data are also called similarities
or dissimilarities. In addition to human judgment, the data can be objective simi-
larity measures like driving or flying distances between pairs of cities or an index
calculated from multivariate data, e.g., proportion of agreement in the votes cast
by pairs of senators. Each object is represented by a point in a multidimensional
space—Euclidean or not.

11.2 Types of MDS

MDS is a generic term and includes many types, classified according to the nature
of dissimilarity data being qualitative (in non-metric MDS) or quantitative (in met-
ric MDS). Further, we can have classical MDS with one dissimilarity or distance
matrix and no weights assigned to object pairs, replicated MDS using several dis-
tancematrices but without anyweights attached to the differentmatrices or replicated
MDS using different weights for the different distance matrices.

In classical metric MDS, data are dissimilarities, complete (no missing entries),
and symmetric. Measurements are at the ratio level. The Euclidean distances in D
are so determined that they are as much like the dissimilarities in S. The common
approach is

l(S) = D + E where l(S) is a linear transformation E is a matrix of residuals.
Elements in D are functions of coordinates; the aim is to determine the coordinates
of X so that the sum of squares of elements in E is minimized, subject to suitable
normalization of X. Torgerson’s method does not actually minimize this sum of
squares.
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11.2.1 Non-metric MDS

Sometimes, it may be realistic to assume a less stringent relationship between the
observed distances or dissimilarities di j and the true distances δi j such that di j =
f (δi j + ei j ) where ei j represents errors of measurements, distortions, etc. Also, we
assume that f (x) is an unknownmonotonically increasing function. And the purpose
could be to retain the relative order among the individuals. The data could be at the
ordinal level of measurement. In addition, the matrix S could be either complete
or incomplete, symmetric or otherwise, and pertain to similarities or dissimilarities.
Non-metric MDS extends the distance model to the Minkowski case and enables
defining.

m(S) = D + E where m(S) is a monotonic transformation of the similarities.
With dissimilarities m(S) preserves order, and with similarities it reverses order.
Thus, in non-metric MDS we need to find a monotonic (order-preserving) transfor-
mation and the coordinates of X which together minimize the sum of squares of
errors in E (after normalization of X ). This is a much more complex optimization
problem.

11.2.2 Replicated MDS

RMDS uses the same distance model as CMDS but considers several distance matri-
ces to visualize locations of the individuals. In metric RMDS, we consider the rep-
resentation lk{Sk} = D + Ek where the left-hand side gives a linear transform of the
kth similarity (distance) matrix Sk which best fits the distances D. The data could be
in ratio or interval scale, and the analysis minimizes the sum of squared elements in
all the error matrices Ek simultaneously. In case of a non-metric RMDS, the repre-
sentation becomesmk{Sk} = D + Ek wheremk{Sk} is themonotonic transformation
of the similaritymatrix Sk that provides a least-square fit to the distances in thematrix
D. It may be pointed out that RMDS tests all the matrices as being related to each
other (through D) by a systematic linear or monotonic transformation (except for a
random error component). Jacobowitz used RMDS to study how language develop-
ment takes place as children grow to adulthood. The study involved a good number
of children in each of several age groups as judges and parts of the human body as
the objects to be ranked for their closeness.

11.2.3 Weighted MDS

In classical MDS (CMDS), we start with a symmetric, complete (with no missing
entry) matrix of distances D = ((di j )) and try to approximate these distances by
Euclidean distances δi j between points on a two- or three-dimensional plane, so that
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the sum of squares of standardized deviations between these two sets of distances
(often called stress) is minimized. In non-metric MDS, ranks of the distances are
reproduced increasing function.

Whereas RMDSonly accounts for individual differences in response bias,WMDS
incorporates a model to account for individual differences in the fundamental per-
ceptual or cognitive process that generate the responses. For this reason, WMDS is
often called individual differences scaling (INDSCAL) and is often regarded as the
second major breakthrough in multidimensional scaling.

WMDS invokes the following definition of weighted Euclidean distance:

di j =
[∑

α

wkα
(
xiα − x jα

)2] 1
2

RMDS generates a single distance matrix D, while WMDS generates m unique
distance matrices Dk , one of each data matrix Sk . The distances Dk are calculated
so that they are all as much like their corresponding data matrices Sk as possible.

Thus, forWMDS,we need to solve for thematrix of coordinates X , them diagonal
matrices of weights Wk, and the m transformations Mk or 1. We wish to do this so
that the sum of squared elements in all error matrices, E , is minimal subject to
normalization constraints on X and Wk.

11.2.4 Sammon Mapping

Sammon mapping is a generalization of the usual metric MDS. Sammon’s stress (to
be minimized) is ⎡

⎣1/
∑
j<k

d jk

⎤
⎦

⎡
⎣∑

i< j

(δi j − di j )2

di j

⎤
⎦ .

This weighting system normalizes the squared errors in pair-wise distances by using
the distance in the original space. As a result, Sammon mapping preserves the small
di j , giving them a greater degree of importance in the fitting procedure than for larger
values of di j .

Optimal solution is found by numerical computation (initial value by CMDS).
Sammon mapping better preserves interdistances for smaller dissimilarities, while
proportionally squeezes the interdistances for larger dissimilarities.

11.3 MDS and Factor Analysis

Multidimensional Scaling (MDS) has been sometimes regarded as an alternative
to factor analysis (FA), and important contributions to both were made initially by
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psychometricians. The common goal of analysis either is to identify meaningful
underlying dimensions that can explain observed similarities or dissimilarities
between objects (or variables). In factor analysis, such similarities among objects
or descriptive variables are indicated by the correlation matrix. In MDS, we can
analyze any kind of similarity or distance matrix, and not only correlation matrix.

Despite the common objective, MDS and FA use basically different methods.
While FA is an inferential tool, MDS is primarily an exploratory tool. In FA, we
assume the data to follow a multivariate normal distribution and the interrelations
among the variables to be linear. MDS does not require any of these assumptions. As
long as similarities or dissimilarities can be rank ordered,MDScanbe validly applied.
Judged by their outputs, FA rings out more factors (dimensions) than MDS. MDS
with two dimensions usually takes results in easily interpretable solutions. MDS can
be applied to look at any kind of distances or similarities, while FA requires the
computation of a correlation matrix. In fact, distances or similarities among objects
in MDS can be direct assessments as perceived by the subjects, while in FA we
have to first rate the perceived distances or proximities in terms of several attributes
(for which FA is carried out). MDS proceeds directly from proximities or distances,
while FA starts from a set of descriptive variables and a correlation matrix for these
variables. Thus, MDS has a much wider applicability compared to FA.

The MDS algorithm involves an optimization exercise explicitly to minimize the
overall standardized difference between the original and reproduced distances (some-
times called the stress). Factor analysis implicitly use some optimization exercise to
estimate factor loadings.

In MDS, the focus is on individuals who are to be displayed as points in a plane,
while factor analysis is focused on variable features (scores) and on factors to explain
intercorrelations among them. Thus in the classical setup of psychological tests,
factor analysis starts with a matrix of interitem or intertest correlations based on
scores on m items or tests obtained by, say, n individuals or testees and proceeds to
explain these correlations or similarities in terms of loadings of the different items
or test on some k underlying latent factors. Possibly, though not conventionally, each
item or test can be displayed as points on this k-dimensional plane. InMDS, however,
we like to reveal pair-wise dissimilarities among the individuals in terms of score
differences or rank differences on each item or test separately. We can use replicated
MDS to eventually obtain n points on a two-dimensional or three-dimensional plane
to display relative positions of the n individuals.

11.4 Distance Matrix

As in all multivariate analysis, we start with the matrix X (n × p)where the element
xi j denoted the value of the j th feature/characteristic for the i th unit/individual. We
can develop a distance matrix D(n × n) considering only the kth feature where the
element di j can be taken as |xik − x jk |.We can generate such amatrix by considering
the total or average of these absolute differences or by taking absolute differences
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between the total and mean scores. In the non-metric approach, we can first convert
any column of the data matrix to a vector of ranks of the n units according to the
particular feature and then construct an n × n matrix of absolute rank differences.
Thus, we can generate p distance matrices corresponding to the p features We can,
alternatively, develop one single absolute average rank difference.

In any case, we start with a single distance matrix or a set of distance matrices.
Elements in the starting distance matrix could be differences in ranks or scores

assigned to pairs of objects w.r.t. some features or properties Depending on the
nature of the elements, distances could be normed to make them comparable with
the Euclidean distances between points representing the objects which could be
defined over unit lengths of the coordinate axes; e.g., if n objects are ranked by
a judge, the maximum difference in ranks for a pair could be n-1, while for two
points in a unit square the maximum distance between two points could be 21/2. In
a unit cube, this would be 31/3. Using these two as divisors, we can make original
differences/distances for objects in a pair with which we start and the (Euclidean)
distances between points as reproduced by MDS comparable.

If we start with similarities or affinities δi j between two objects or entities i and j ,
we can deduce dissimilarities di j by choosing a maximum similarity c ≥ maxδi j and
taking di j = c − δi j for i and j different; and di j is zero otherwise. One apparent
problem will arise with the choice of c, since the ultimate picture will vary from
one choice to another, which is an undesirable situation. However, non-metric MDS
takes care of this problem and even cMDS and Sammon mapping fare pretty well
in this context.

Distance, dissimilarity, or similarity (or proximity) are defined for any pair of enti-
ties (objects) in space. In mathematics, a distance function (that provides a distance
between two given objects) is also called a metric d(X,Y ), satisfying

(i) d(X,Y ) ≥ 0; (i i) d(X,Y ) = 0 i f and only i f X = Y ;

(i i i) d(X,Y ) = d(Y, X); and (iv) d(X, Z) ≤ d(X,Y ) + d(Y, Z).

A set of dissimilarities need not be distances or, even if so, may not admit to
interpretation as Euclidean distances.

The starting distances could be physical distances (driving or flying) between
cities, taken in pairs, within a region like a continent or a big country, as are shown
by points on the plane of a Cartesianmap or on the surface of a globe. These distances
are those on a non-Euclidean surface, and we may like to locate the cities as points
on an Euclidean plane where the Euclidean distances between any two cities will be
as close as possible to the actual distances between them.

Moving to a completely different area, we can consider the example of perception
of color in human vision (studied by Ekman 1954). A total of 31 persons were asked
to rate on a five-point scale from 0 (no similarity at all) to 4 (identical) each of 14c2
pairs of 14 colors differing only in their hues (i.e., wavelengths from 434 to 674m).
The average rating over 31 persons for each pair (representing similarity) was then
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scaled and subtracted from 1 to represent dissimilarities, resulting in the following
dissimilarity matrix (di j × 100) for all i > j .

Higher / Lower 434 445 465 472 490 504 537 555 584 600 610 628 651
445 14
465 58 50
472 58 56 19
490 82 78 53 46
504 94 91 83 75 39
537 93 93 90 90 69 38
555 96 93 92 91 74 55 27
584 98 98 98 98 93 86 78 67
600 93 96 99 99 98 92 86 81 42
610 91 93 98 100 98 98 96 96 63 26
628 88 89 99 99 99 98 98 97 73 50 24
651 87 87 95 98 98 98 98 98 80 59 38 15
674 84 86 97 96 100 99 100 98 77 72 45 45 32 24

Ekman could show two color clusters lying vertically on a two-dimensional plane
one with eight colors to the left and the other with six to the right. In regard to the
second coordinate, distances between points in the second cluster were smaller than
those in the first cluster.

11.5 Goodness of Fit

It is expected that the fit between the original distances and the Euclidean distances
reproduced by multidimensional scaling on a lower- dimensional space will depend
on the number of dimensions (usually two or three) retained in the procedure and
the method used for dimension reduction. It is thus important to use a measure of
goodness of fit that will help us in choosing the appropriate number of dimensions of
the space on which the units will be shown as points. Some of the possible measures
could be based on.

Squared Differences: This is the sum of the squared differences between the given
dissimilarities and the reproduced distances. Themagnitudewill depend on how large
are the given dissimilarities and hence cannot be used to compare across situations. In
fact it is not an index, similar to the adjusted R2 in regression analysis which indicates
the percentage of the sum of squared differences (corrected for the mean) accounted
for by a certain number of dimensions. A value above 80 percent is expected for a
good fit.

PseudoR-squared: This is an index similar to the adjusted R2 in regression analysis.

Stress or Normalized Stress: This is the most widely accepted measure of goodness
of fit and is defined as
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S =
⎡
⎣∑

i< j

(di j − δi j )
2

⎤
⎦ / ⎡

⎣∑
i< j

d2
i j

⎤
⎦

where d and δ correspond to the given (actual) and the reproduced distances, respec-
tively. Stress could also be defined by replacing the denominator by the sum of
squared reproduced distances. Smaller the value of stress, better the fit. It is obvious
that MDS is able to reproduce the original relative positions in the map as stress
approaches zero. Kruskal (1964) suggested the following advice about the stress
values.

Stress Goodness of Fit
0.200 Poor
0.100 Fair
0.50 Good
0.25 Excellent
0 Perfect

More recent articles caution against using such a table like this, since acceptable
values of stress depend on the quality of the distancematrix and the number of objects
as also the number of dimensions used.

11.6 An Illustration

Consider a set of eight brands of TV sets and get their performance ranks given by
a judge, based on several aspects of performance like picture clarity, sound control.
We can involve several judges and take the average ranks.

It is also possible that for each set we get the proportion of judges who consider
the given set as the best.

For the first case, suppose we have
Set 1 2 3 4 5 6 7 8
Rank 7 4 1 5 2 8 6 3
We can now construct the absolute rank difference or distance matrix as follows.

Set 1 2 3 4 5 6 7 8
1 0 3 6 2 5 1 1 4
2 3 0 3 1 2 4 2 1
3 6 3 0 4 1 7 5 2
4 4 1 4 0 3 3 1 2
5 5 2 1 3 0 6 4 1
6 1 4 7 3 6 0 2 5
7 1 2 5 1 4 2 0 3
8 4 1 2 2 1 5 3 0
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• We have to find out the coordinates of eight points on a two-dimensional plane so
that thematrix of Euclidean distances between pairs of points and thematrix just now
obtained is a minimum. One simple way is to consider the sum of squared differences
between these two distance measures over all possible pairs divided by the sum of
the original distances as the criterion of fit and the best-fitting representation is one
in which this sum (stress) is minimized.

11.7 Metric CMDS

Starting with a matrix of distances or dissimilarities D = ((di j )) among pairs of n
objects or subjects (to be compared) in respect of some feature or features, MDS
comes up with a matrix of estimated distances D′ = ((d ′

i j )), and estimation being
done to minimize the difference between D and D” is as small as possible. MDS
produces a map of the n objects usually in two dimensions so as to preserve the
relative positions of the objects. In classical or metric MDS, the original metric
or distance is reproduced, whereas in non-metric MDS, ranks of the distances are
reproduced. Going by a two-dimensional map to be provided by MDS, each object
will be eventually reproduced by a pair of coordinates or a point on a scatter plot
from which we can visually assess the distance between the two points in each pair
which can be conveniently taken as the Euclidean distance

d ′
i j = √

�(xik − x jk)
2 (summed over k = 1, 2) where xik and x jk are the coor-

dinates of the points corresponding to objects i and j .
To work out values of di j amounts to determining values of xik and x jk, k =

1, 2, . . . n so that we get points on a two-dimensional plane in such a way that d ′
i j

“is as close as possible to di j .” The task is not just to find out distances di j s but the
coordinates. This is given by the following algorithm

1. From D calculate A = {−1/2d2
i j }.

2. From A calculate B = {a + i j − ai0 − a0 j + a00}, where ai0 is the average of all
ai j across j .

3. Find the p largest eigenvalues λ1 > λ2 > λ3 · · · > λp of B and corresponding
eigenvectors L= {L(1), L(2), . . . , L(p)}which are normalized so that L(i)/L(i) =
λI . We are assuming that p is selected so that the eigenvalues are all relatively
large and positive.

4. The coordinate vectors of the objects are the rows of L.

References and Suggested Readings

Carroll, J. D., & Chang, J. J. (1970). Psychometrika, 35, 238–319. (A key paper: Provides the first
workable WMDS algorithm and one that is still in very wide use. Generalizes singular value
(Eckart-Young) decomposition to N-way tables).



122 11 Multidimensional Scaling

Jacobowitz, D. (1973). Development of semantic structures. Unpublished Ph.D. dissertation, Uni-
versity of North Carolina at Chapel Hill.

Kruskal, J. B. (1964).Psychometrika, 29, 1–27; 115–129. (Completes the secondmajorMDSbreak-
through started by Shepard by placing Shepard’s work on a firm numerical analysis foundation.
Perhaps the most important paper in the MDS literature).

Kruskal, J. B.,&Wish,M. (1977).Multidimensional Scalling. BeverlyHills, CA: Sage Publications.
(Very readable and accurate brief introduction to MDS that should be read by everyone wanting
to know more).

Richardson, M. W. (1938). Psychological Bulletin, 35, 659–660.
Schiffman, S. S., Reynolds,M. L.,&Young, F.W. (1981). Introduction toMultidimensional Scaling.
New York: Academic Press.

Shepard, R. N. (1962). Psychometrika, 27, 125–140; 219–246. (Started the second major MDS
breakthrough by proposing the first nonmetric algorithm. Intuitive arguments placed on firmer
ground by Kruskal).

Takane, Y., Young, F. W., & de Leeuw, J. (1977). Psychometrika, 42, 7–67. (The third major MDS
breakthrough. Combined all previous major MDS developments into a single unified algorithm).

Torgerson, W. S. (1952). Psychometrika, 17, 401–419. (The first major MDS breakthrough).
Young, F. W. (1981). Psychometrika, 46, 357–388. (A readable overview of nonmetric issues in the
context of the general linear model and components and factor analysis).

Young, F. W. (1984). In H. G. Law, C. W. Snyder, J. Hattie, & R. P. MacDonald (Eds.). Research
methods for multimode data analysis in the behavioral sciences. (An advanced treatment of the
most general models in MDS. Geometrically oriented. Interesting political science example of a
wide range of MDS models applied to one set of data).

Young, F. W., & Hamer, R. M. (1994). Theory and applications of multidimensional scaling. Hills-
dale, NJ: Eribaum Associates. (The most complete theoretical treatment of MDS and the most
wide ranging collection of).



Chapter 12
Social and Occupational Mobility

12.1 Introduction

The best way of quantifying human populations is by classifying their members on
the basis of some personal attribute. One may classify families according to where
they reside or workers by their occupations. Thus to study the dynamics of social pro-
cesses, it is natural to start by looking at the movement of people between categories.
Since suchmoves are largely unpredictable at the individual level, it is necessary for a
model to describe mechanism of movement in probabilistic terms. The earliest paper
in which social mobility was viewed as stochastic processes appears to be that of
Prais (1955a, b). Since then, their has been grown up a large literature. A distinction
has to be made between intergenerational mobility and intra-generational mobility.
The former refers to changes of social class from one generation to another. Here the
generation provides a natural discrete time unit. This phenomenon is usually called
social mobility. Intra-generational mobility refers to changes of classes which take
place during an individual’s life span. This type of movement is called occupational
or labor mobility since it is usually more directly concerned with occupations. Many
deterministic and stochastic models have been developed to study social and occupa-
tional mobility situations in the different parts of the world. Several empirical studies
of mobility have been published.

To study the movement of individuals over occupational categories, it is natural to
start by looking at themovement of people between different categories and also at the
process of recruitment of new entrants. Since such moves are largely unpredictable
at the individual level, it is necessary to find a model to describe the mechanism of
movement in probabilistic terms.

Study on occupational mobility is an important part of manpower planning. Such
studies always help different organization, institutes, companies to properly build
up their future plans regarding the number of new recruits and also help their staff
members to properly plan their career. Different organization having the same setup
may use the same model to study the promotion pattern. All such studies together
are really helpful for proper manpower planning of the country.
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Studies related to the dynamics of social systems whose members move among a
set of classes are of great importance for manpower planning. Inmanpower planning,
the classes represent grades whose sizes are fixed by the budget or amount of work to
bedone at each level.Recruitment andpromotion canonlyoccurwhenvacancies arise
through leaving or expansion. The stochastic element in such processes occurs due
to loss mechanisms. Individuals leaving or moving create vacancies which generate
sequence of internal moves. There may also be randomness in the method by which
vacancies are filled. Development of such models has been done using replacement
theory. Originally, such problems have arisen in connection with the renewal of
human population through deaths and births. In recent years, the main application
has been in the context of industrial replacement and reliability theory. The key
random variables in all cases are the length of time an entity that remains active in a
particular grade.

Let us start with mobility models and some related measures. There are several
models and measures based on Markov chain. Prais (1955a, b) was probably the first
author to apply Markov chain theory to social mobility. The society is characterized
by the transition probability matrix P , and most of the measures proposed are based
on this matrix. Some examples are listed inMatras (1960). In a completely immobile
society, ‘son’ will have the same class as their father and P will be an identity matrix.
Prais (1955a, b) defined a perfectly mobile society as one in which the ‘son’s’ class
is independent of his/her‘father’s.’ For such a society the rows of P will be identical.
A third situation can be identified as extreme movement in which every ‘son’ has a
different class from his/her ‘father.’

Bartholomew (1982) proposed an idea of social mobility based on the matrix P
and the elements of π (vector giving the limiting distribution of the population among
the classes).

A measure of generation dependence can be developed by considering the extent
to which a son’s class depends on that of his/her father’s. A method of doing this is
suggested by considering spectral representation of P in the form

P =
k∑

r=1

θr Ar

Thematrices {Ar } constitute the spectral set. The coefficients {θr } are the eigenvalues
of P and since P is stochastic 1 = θ1 ≥ |θ2| ≥ · · · ≥ |θk |

Ameasure proposed by both Shorrocks (1978) and Sommers and Conlisk (1979)
is based on the second largest, in absolute values, of the θs . If it is denoted by θmax ,
then the measure in μ1(P) = θmax .

Bartholomew (1982) proposed two other measures given by

μ2(P) = 1

k − 1

k∑

r=2

θr
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μ3(P) = |θ2θ3 . . . θk | 1
(k−1)

By regarding the distribution of the population at times t and (t + 1) as two multi-
nomial populations, by using Bhattacharyya distance (1945–46) a measure of diver-
gence has been suggested by Mukherjee and Basu (1979) as below

cos� =
∑

i

√
π(t)
i π(t+1)

i

where � = 0 if P = I
By considering measures of association as inverse measure of mobility, Mukher-

jee and Chattopadhay (1986) proposed a number of measures based on different
coefficients of association. They also proposed another measure based on minimum
discrimination information statistic (m d i s) given by

J (1, 2) =
k∑

j=1

(π(t)
j − π(t+1)

j )loge

(
π(t)
j

π(t+1)
j

)

Occupational mobility refers to the movement of employees between jobs or job
categories. For job changes over different organizations, the time interval between
successive changes is likely to be random. As a result, for such situations simple
Markov model does not provide a satisfactory representation. Attempts have been
made to describe occupational mobility patterns in terms of semi-Markov processes
(Ginsberg 1971, 1972). Bartholomew (1982) suggested one measure based on the
transition probability matrix and the stochastic process {m(T )} where m(T ) is the
random number of decision points in the interval (0, T ). Mukherjee and Chattopad-
hay (1986) developed one measure based on renewal process. Starting with semi-
Markov process, Mukherjee and Chattopadhyay proposed another measure in terms
of the number of occupation changes during an interval of time. The same authors
have also considered the situations where the job categories may be ordered in some
sense.

Chattopadhyay and Gupta (2003) considered a discrete time Markov process
where states of the system denote grades of the employees in an organization. The
total size of the system is fixed. The recruitment needs are determined by the losses,
together with any change in the size of the system. A specific version of the model
with a fixed total size is due to Young and Almond (1961) who applied the model to
the staff structure of a British University. The proposed model has been developed to
study the career prospect on the basis of the staff categories and promotion pattern
for non-teaching staff members of University of Calcutta.

Chattopadhyay and Khan (2004) has extensively studied the nature of job changes
of staff members of University of Southern Queensland, Australia, on the basis of
stochastic model. Khan and Chattopadhay (2003) have also derived corresponding
prediction distribution on the basis of job offers received by the employees. Such
type of works are very useful to investigate the manpower planning condition in
different organization.
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12.2 Model 1

The present model has been developed on the basis of the staff categories and pro-
motion pattern for non-teaching staff members of University of Calcutta. Suppose
that the members of the organization are divided into k strata (grades) in which there
are r strata where direct appointments from outside are allowed (together with the
promotion of existing staff members) and in the remaining (k − r) strata posts no
new appointment from outside is allowed. Only internal staff members are promoted
to those positions. Let ni (t) denote the number of people in the first type of category
i at time t (i = 0, 1, 2, . . . , r) and z j (t) denote the number of people in the second
type of category j at time t ( j = r + 1, r + 2, r + 3, . . . , k). The initial grade sizes
are assumed to be given. Also let

N (t) =
r∑

i=1

ni (t) +
k∑

j=r+1

z j (t) (12.2.1)

N (0) =
r∑

i=1

ni (0) (12.2.2)

where N (0) is the total number of first type vacancies available. For t > 0, the grade
sizes are random variables. Let us denote by e(t) the number of new entrants in the
system at time t and by pi j , the probability of transition from grade i to grade j for
an individual. These transition probabilities are assumed to be time homogeneous.
The system from 1 to r be open system and grade (r + 1) to k be closed system.
The allocation of new entrants in the system is specified by poj which gives the
expected proportion of new entrants to the j th grade ( j = 0, 1, 2, . . . , r). Here, we
also assume that a person only moves to the next grade.
when j ≤ r − 1,

E(n j (t + 1)) =
r−1∑

i=1

pi j E(ni (t)) + e(t + 1) poj , t = 1, 2, 3 . . .

j = 1, . . . , r − 1 (12.2.3)

when j = r ,
the expected value of n j (t + 1) has been divided into two parts, one part due

to changes by promotion and new appointment (n1r ) and other part only due to
promotion (n2r ),

E(n1r (t + 1)) = pr−1r E(nr−1(t)) + e(t + 1)p0r t = 1, 2, 3 . . . (12.2.4)

E(n2r (t + 1)) = prr E(nr (t)) (12.2.5)
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E(nr (t + 1)) = E(n1r (t + 1)) + E(n2r (t + 1)) (12.2.6)

when j ≥ (r + 1),

E(z j (t + 1)) =
k∑

i=r+1

pi j E(zi (t)) t = 1, 2, 3 . . .

j = r + 1, . . . , k (12.2.7)

12.2.1 Some Perfect Situations

Let us define the following two perfect situations regarding promotion.
I. Perfect promotion situation
Under this situation, a particular individual has the equal chances of moving into

two successive categories.

Pk×k =

⎛

⎜⎜⎜⎜⎜⎝

1/2 1/2 0 . . . 0
0 1/2 1/2 . . . 0
...

0 . . . 1/2 1/2
0 . . . . . . . . . 1

⎞

⎟⎟⎟⎟⎟⎠

II. No promotion situation
Under this situation, a particular individual has no chance of promotion.

Pk×k =

⎛

⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

0 0 . . . 1

⎞

⎟⎟⎟⎠

12.2.2 Possible Measures of Career Pattern

The extent to which an individual changes his/her job from one category to another
higher category can be measured by using different indices.

A measure can be defined as a continuous function M(.) defined over the set of
transition matrices P such that

0 ≤ M(P) ≤ 1 for all P ∈ P.
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For this, the function M(.) requires no significant constraint on the set of potential
measures since a change of origin and scale can always be found such that the
transformed variables take values within the chosen interval. The function M(.) is
monotonic in nature because the probability of movements between grades are given
by the off-diagonal elements of the transition matrix. The increasing off-diagonal
elements indicates the higher level ofmobility among the career pattern of individuals
and hence

M(P) > M(P ′) when P > P ′ (12.2.8)

12.2.3 Measure of Career Pattern Based on Mahalanobis
Distance

We introduce a new measure of occupational mobility in terms of distance of two
populations. Here,we consider occupational situation at time t as one population and
at time (t+1) as another. A common distance measure is Mahalanobis distance.
Let υ = (X1(t), X2(t), X3(t), . . . , Xk(t))′

υ ∼ Multinomial(N (t),π1(t),π2(t), . . . ,πk(t)),
k∑

i=1

πi (t) = 1;

uY = (Y1(t + 1),Y2(t + 1),Y3(t + 1), . . . ,Yk(t + 1))′

uY ∼ Multinomial(N (t + 1), π1(t + 1),π2(t + 1), π3(t + 1), . . . , πk (t + 1)),
k∑

i=1

πi (t + 1) = 1;

where,
Xi (t) = Number of persons belonging in category i at time t;
πi (t) = Prob. of a person belonging in category i at time t;
N(t) = Total Number of persons in entire system at time t;
Yi (t + 1) = Number of persons belonging in category i at time (t + 1);
πi (t + 1) = Prob. of a person belonging in category i at time (t + 1);
N (t + 1) = Total Number of persons in entire system at time (t + 1);

E(uX) = N (t)uπ(t)

E(uY ) = N (t + 1)uπ(t + 1)



12.2 Model 1 129

uA1 =

⎛

⎜⎜⎜⎜⎝

π1(t)(1 − π1(t)) −π1(t)π2(t) −π1(t)π3(t) . . . . . . −π1(t)πk−1(t)
−π1(t)π2(t) π2(t)(1 − π2(t) −π2(t)π3(t) . . . −π2(t)πk−1(t)

.

.

.
.
.
.

.

.

.
.
.
.

−π1(t)πk−1(t) . . . . . . −πk−1(t)(1 − πk−1(t))

⎞

⎟⎟⎟⎟⎠

(k−1)×(k−1)

Let, t ′ = t + 1;

uA2 =

⎛

⎜⎜⎜⎜⎝

π1(t ′)(1 − π1(t ′)) −π1(t ′)π2(t ′) −π1(t ′)π3(t ′) . . . −π1(t ′)πk−1(t ′)
−π1(t ′)π2(t ′) π2(t ′)(1 − π2(t ′)) −π2(t ′)π3(t ′) . . . −π2(t ′)πk−1(t ′)

.

.

.
.
.
.

.

.

.
.
.
.

−π1(t ′)πk−1(t ′) . . . . . . πk−1(t ′)(1 − πk−1(t ′))

⎞

⎟⎟⎟⎟⎠

(k−1)×(k−1)

M − D = (uπ(t) − uπ(t + 1))′uS−1(uπ(t) − uπ(t + 1)). (12.2.9)

where

uS(k−1)∗×(k−1) = uA1 + uA2 (12.2.10)

Here actually wemeasure the shifting of themean of population to study themobility
pattern.

12.2.4 Measure of Career Pattern Based on Entropy

Entropy as defined in a thermodynamical context arises naturally as additive quantity.
Under this setup, probabilities are multiplicative. It can be shown that if the entropy
S is a function of the probability P of a state, then S must be proportional to lnP .
When we come to consider information as a function of probability, the same kind
of relationship will apply.

Information is a statistical property of the set of possible messages, not of an
individual message. If the probability of occurrences of symbol i in a system is pi ,
Kendall (1973) observed the following requirements for a measure H of ‘informa-
tion’ produced, which is continuous in the pi . He then showed that only measure
confirming to these requirements is

H1 = −const
n∑

i=1

pi ln(pi ) (12.2.11)

where pi is the probability of a person belonging to the i th category.
Under the present setup, an appropriate measure on the absolute difference

between the entropies of the classifications (distributions) corresponding to t and
t + 1 is defined as,
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E = |
k∑

i=1

πi (t)ln(πi (t)) −
k∑

i=1

πi (t + 1)ln(πi (t + 1))| (12.2.12)

M − D and E can be estimated by replacing the π(t) and π(t + 1) values by their
corresponding MLE. M − D and E are exactly equal to zero under no promotion
situation. Under perfect promotion situation, the values may be obtained by using the
relation uπ(t + 1) = u�′uπ(t). The exact value will depend on the estimated values
of uπ(t) and the number of categories. M − D measure completely depends upon
the data set and on the distribution of population. But E measure depends upon only
data set. The value of M − D for perfect promotion situation also depends upon the
data set, but the value of E under the perfect promotion situation does not depend
upon the data set and it is always equal to unity.

12.2.5 An Example

Consider the following real-life example on the non-teaching stuff of University of
Calcutta officer class of the year 1990 and 2000. This was a six-grade hierarchical
system. Here, r = 3, i.e., direct appointment be allowable upto third category. The
estimated transition probability matrix from the flow data for the years 1990–91 and
2000–01 is as follows:

P =

⎛

⎜⎜⎜⎜⎜⎜⎝

.7 .3 0 0 0 0
0 1 0 0 0 0
0 0 .5 .5 0 0
0 0 0 .834951 .165049 0
0 0 0 0 .457143 .542857
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠

(6×6)

π̂(t) = (0.134, 0.109, 0.369, 0.276, 0.093, 0.276, 0.093, 0.016)′

π̂(t + 1) = (.093, .1501, .184987, .41555, .088472, .067024)′

P1 =
(

.7 .3
0 1

)2×2

P2 =
⎛

⎝
.834951 .165049 0
.457143 .542857

0 0 1

⎞

⎠
3×3

p33 = .5

p34 = .5
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p23 = 0

For the above example, the values of M − D and E measures as well as the values
of those measures under perfect promotion and no promotion are given in table:

Observed Perfect Promotion No promotion

̂M − D 0.05 0.085 0

Ê 0.024201 0.0468460 0

Since the observed value of M − D and E measures is near to the values under
perfect promotion situation, it may be inferred that the chances of promotion are very
high.

12.3 Model 2

The following measure was developed by Chattopadhyay and Khan (2004). Suppose
that the service life of a person be comprised of k intervals of equal fixed width, t .
The person gets at least one job offer within each such interval. The worth of an offer
being determined by the associated salary (reward). The individual (assumed to be in
service already) decides to leave the present job or not, at the end of each interval. One
moves to a new job for the first time at the end of an interval in which themaximum of
the remunerations associated with different job offers (within that interval) exceeds
a fixed amount. This is the minimum wage at which the individual is willing to enter
the job market for the first time. Subsequently, one changes the current job at the
end of a particular interval only when the maximum of the wages associated with the
offers received during that interval exceeds the wage of the current job. A change of
job in this paper means that an individual may move from one occupation to another
or within the same occupation. Let the individual gets Ni new job offers in the i th
interval and let Xi j be the salary corresponding to the j th job offer in the i th interval,
for j = 1, 2, . . . , ni , and i = 1, 2, . . . , k. Note that to reflect the real-life situation, it
is necessary to assume that ni is strictly greater than zero since none can enter into the
job market without a job offer. Both Xi j and Ni are assumed to be independently and
identically distributed with pdf g(x), 0 < x < ∞, and pmf h(y), y = 1, 2, . . . ,∞,
respectively. Define

Zi = max(Xi1, Xi2, . . . , Xini ). (12.3.13)

Here Zi is the maximum wage of all job offers during the i th interval. Since Zi

is the largest order statistic, for a given ni , the pdf of the conditional distribution of
Zi is

f (zi |ni ) = ni [G(xi j )]ni−1g(zi )



132 12 Social and Occupational Mobility

where G(·) is the cdf of the distribution of Xi j . Hence, the distribution of Zi is given
by

f (zi ) =
∞∑

ni=1

ni [G(zi )]ni−1g(zi )h(ni ) (12.3.14)

where g(·) and h(·) have the same specifications as before.
Let FZi (z) denote the corresponding cdf. Let z0 be the minimum wage for which

the individual accepts the first job offer at the i ih interval. Then we can define

FZi (z0) = P[Zi < z0] (12.3.15)

and its complement

F̄Zi (z0) = 1 − FZi (z0) = P[Zi > z0]. (12.3.16)

Chattopadhyay and Khan defined a measure of occupational mobility as below.
Define N (k) = total number of job changes within the service life of the individual
and p(k)

r = the probability of r job changes in the entire service life of the individual.
Then

p(k)
r = P[N (k) = r ]. (12.3.17)

A measure of occupational mobility using p(k)
r can be defined as

E[N (k)] =
k∑

r=0

rp(k)
r = [(k + 1)F̄ − F̄ Fk − F(1 − Fk)]/2F̄ . (12.3.18)

In the computation of E[N (k)], different binomial and geometric series are
involved. After normalization with respect to k, the measure becomes E[N (k)/k].
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Chapter 13
Social Network Analysis

13.1 Introduction

In a finite [small or large] reference population of individuals or households [HHs],
in socioeconomic census or surveys, we primarily deal with individuals or HHs as
‘responding units’ and the designated questionnaire is geared toward the respondent
and to the HH he/she belongs to. In social network analysis (SNA), the questionnaire
involves, among other matters dealing with the specific responding individual/HH,
specific queries dealing with pairs of HHs in the reference population. The word
‘query’ is contextual andhas a very broad interpretation anduse. It is thedyadic nature
of the query involving pairs of individuals or HHs, i.e., societal units whatsoever,
in a reference societal population that builds a social network [SN]. This dyadic
relationship, marked by the ‘direction of flow,’ is what SNA in concerned with.
Hence, the proper setting for studying social networks is what is called a directed
graph, abbreviated as digraph, illustrated below with a small hypothetical example.

In a miniature form of a population consisting of only ten mostly marginal farmer
HHs, a question about their financial needs and inter-dependence at times of financial
crisis was raised. Specifically, every farmer was asked to respond to the question:
During the last farming season, did you approach any of your fellow-farmers for any
kind of financial help/support? The answers are summarized below.

In the above table, a ‘Yes’ response corresponding to Row i and Column j
is to be interpreted as HH i has sought help f rom HH j in some manner
during the reference farming season. Note that whereas HH 1 has approached
HH 5, HH 6, HH 7, HH 10, these four HHs did not necessarily ‘reciprocate’
and only HH 6 and HH 10 got to HH 1 for meeting their needs.

The above exhibits interesting features of what is termed as a social network.
There are one-way, i.e., ‘directed’ help/support relations, two-way or ‘symmetrical’
or ‘reciprocal’ relations, and no [in either direction] relation at all. We are referring
to pairs of HHs and their interrelations so far as this particular query is concerned.

In graph–theoretical terminology, the above response profiles may be viewed as
generating a directed graph with one-way and two-way ‘ties’ or ‘arrows’ or ‘arcs’
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connecting the HHs which are represented as vertices of the graph. In the above, we
have ten vertices and of them Vertex # 2 has a special role in the graph. It is what is
termed as ‘isolated vertex,’ and it separates itself from the rest of the vertices. This
particular HH does not approach any other HH nor any other HH does approach
the head of HH # 2. Such type of vertices are designated as ‘isolates.’ There are
sociological explanations for existence of such HHs distancing themselves from the
rest in a community. Otherwise, there are one-way relations as also two-way or
symmetrical relations.

The ‘out-degree’ of a vertex [HH] is the number of other vertices [HHs] approached
by the specific reference vertex. Likewise ‘in-degree’ of a vertex is the number of
other vertices [HHs] approaching the reference vertex [HH].

In the above, out-degree of HH # 1, for example, is 4 while its in-degree is 5.
Sometimes, out-degree is characterized by ‘Expansiveness’ of the vertex [HH] while
in-degree is characterized by its ‘Popularity.’ We may denote by Ei and Pi the out-
degree and in-degree of HHi . Again a reciprocal relation is characterized by the
presence of a two-way or symmetrical tie.

We may also introduce the notion of an ‘incidence matrix’ of the underlying
digraph. Let I (i, j) = 1 if there is an arc originating at i and terminating at j . In
otherwords, I (i, j) = 1 if andonly if HHi reaches out to HHj . Similarly, I (r, s) = 1
if and only if HHr reaches out to HHs . A reciprocal tie between HHi and HHj

exists if and only if I (i, j) = I ( j, i) = 1. Such incidence patterns give rise to the
incidence matrix I = ((I (i, j))) of order n where n is the number of vertices in the
digraph, i.e., number of HHs in our study. It readily follows that

Ei =
∑

j

I (i, j); Pj =
∑

i

I (i, j), s(i, j) = I (i, j) × I ( j, i).

In the above, s(i, j) is the score attached to the pair of HHs i and j in terms of
the existence of a symmetrical relation between the two. This means: s(i, j) = 1 if
and only if I (i, j) = I ( j, i) = 1; otherwise, s(i, j) = 0.

Average out-degree is defined as Ē = ∑
Ei/n and similarly, average in-degree

is defined as P̄ = ∑
Pi/n. On the other hand, average reciprocity is defined as

R̄ =
∑

i

∑

j>i

2s(i, j)/n(n − 1).

In a digraph, these three quantities [average out-degree, average in-degree, and
average reciprocity] are known as ‘key parameters.’ It is interesting to note that
average out-degree = average in-degree, irrespective of the nature of the digraph.

In the literature, however, graph–theoretical [deterministic] and statistical
[stochastic] models have been introduced and discussed at length. The validity of
the statistical models has also been examined with reference to observed networks
in terms of tests of goodness of fit and other valid statistical tests based on relevant
data arising out of the networks.



13.1 Introduction 137

Also discussed at length in the literature are graph–theoretical and statistical
measures and methods. These cover (i) local measures of ego-centric characteristics;
(ii) local-cum-global measures of ego-centric and global characteristics, and (iii)
global characteristics. Collectively, reciprocity, cohesion (density), expansiveness
(out-degrees), popularity (in-degrees) and power, connectedness and fragmentation
(strong and weak components), reachability, cliques, centrality and hierarchy and
some such measures.

We will now pass on to the sampling aspect of a digraph and examine methods
of estimation of the above three key parameters of a given digraph—assumed to
have arisen out of a large number of vertices [HHs]. Sampling from a finite [labeled]
population of HHs and thereby developing tools and techniques for estimation of the
key parameters is regarded as a very important aspect of study of a digraph.

It has to be understood that for large populations, it is not at all an easy task to
enumerate all the HHs and compile data on above types of networks [without any
non-response or any reporting errors whatsoever!]. Random sampling of some of the
HHs for collecting necessary data seems to be a viable alternative as it can be con-
ducted competently and more cautiously to avoid any misreporting or non-response.
By doing so, we are not make any attempt whatsoever to mimic the population net-
work and create a prototype. This is simply not possible. However, for some of the
population parameters, we may attempt to provide ‘reasonably accurate’ estimates
based on a sample network.

In the next section, we propose to discuss some aspects of sampling and inference
in the context of digraphs.

13.2 Sampling and Inference in a SN

In a social network, we are dealing with queries involving ‘dyads,’ i.e., based on
pairs of HHs. In a way, therefore, single-HH-related information is not of much
direct relevance. For large villages, i.e., villages involving a large number of HHs,
collection of relevant and reliable dyadic data from all pairs of the HHs is quite
prohibitive and may invite missing/incomplete dyadic elements as well.

Instead, if we are interested in some specific descriptive features of the network
[such as the average out-degree or average in-degree, the average reciprocity, for
example], sample survey techniques, adequately applied, may provide relevant infor-
mation based on a sample of HHs, suitably chosen and surveyed.

With reference to a social network, sampling of population units and estimation
of dyadic parameters are extremely fascinating topics. This area of survey sam-
pling research, though very much different from standard survey topics, has created
enough interest among survey statisticians. It is impressive indeed to note that sev-
eral researchers have formulated general estimation problems involving dyads [and
triads, too] and applied random sampling techniques for proposing solutions to the
problems. We will briefly discuss some basic results and present them in the right
framework.
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Following Cochran (1977), Frank (1977a, b, 1978), and Thompson (2006), we
now intend to discuss some aspects of sampling and inference in a social network.
In the language of sampling, we may refer to the HHs [or vertices in a digraph]
as ‘sampling units,’ or, simply as units. To conceptualize, let us think of a net-
work having a total of N population units with an incidence matrix I . We refer
to this network as a population network and imagine a situation where it is not
possible to enumerate the whole of it in terms of the out-degrees and in-degrees
of all the units in the population. In such a situation, we may take recourse to a
sample, comprising of, say n sample units, where n << N . We assume that all the
N units in the population network are identifiable and may be labeled as 1, 2, . . . ,N .
Therefore, selection of a sample of n units should be a routine task. We may use
simple random sampling without replacement procedure [abbreviated henceforth as
SRSWOR(N, n) procedure] and come up with a random sample of n units out of the
total of N population units. According to this procedure, the units can be selected
one by one at random and without replacement, each time from the rest of the pop-
ulation units; or else, the units can be selected all at a time. Vide Cochran (1977),
for example. Our presentation is at a basic level, and it involves specific parameters
of the network. Complicated sampling methodologies are to be found in Goswami
et al. (1990) and Sinha (1977), among others.

In case of ‘complete enumeration’ of the population, i.e., hundredpercent selection
of the units [like HHs, in the context of a village network], we collect complete and
accurate information regarding the flow of out-degrees and in-degrees associated
with each unit. This, in its turn, leads to the conceptualization, visualization, and
construction of the incidence matrix I , mentioned above, in its totality. From this, in
principle, the entire network can be drawn and all graph–theoretical, sociological, and
statistical measures can be ascertained. However, as has been pointed above, more
often than not, we may end up with rather discouraging scenarios involving missing
or unreliable dyadic components, unless we are dealing with small-size networks.

While illustrating the notions and basic results of sampling and inference for
network data, we have conceptualized the network of a hypothetical population of
N = 53 HHs.

13.3 Data Structure in a Random Sample of Units

For a finite population of N = 53 HHs, let us consider a random sample of n = 10
HHs—selected according to SRSWOR(N , n) procedure. Let us serially number the
sampled HHs as 1, 2, . . . , n = 10.

What kind of data do we extract from these 10 selected HH units?
The following possibilities may be enumerated:
Data Type − 1. Data are in the form of a submatrix of size n × N , being a sub-

matrix of the incidence matrix I , comprising of the rows labeled i1, i2, . . . , in, cor-
responding to the units i1, i2, . . . , in included in the selected sample.
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Referring to the conceptualized network of 53 HHS, this suggests that each HH
selected in the sample is requested to release information in respect of his/her out-
degree status with reference to all other (N − 1) = 54HHs in the population at large,
no matter which HHs are included in the sample and which HHs are not included
in the sample. There are two issues worth mentioning in this context. On a positive
note, this provides the out-degree value Ei for each of the n = 10 sampled units—
besides the detailed description of Ii j -values for each j �= i . On the negative side,
once sampling and data collection are over, we are not in a position to cross-verify the
results of the statements made by the sampled HHs involving the unsampled HHs.

Data Type − 2. This time we confine to the collection of the out-degrees of the
selected units without any details. Note that the out-degrees correspond to the row
totals in the submatrix of the incidence matrix referred to above.

Referring to a village network, this suggests that each selected HH declares the
value of his/her out-degree, without any details. Again there is no way to cross-verify
the statements—even in respect of the HHs included in the sample.

Data Type − 3.Data are in the form of amatrix of size n × n, being the submatrix
of the incidence matrix I , comprising of the rows and columns based on the selected
units, i.e., HHs. Note that this data set exclusively refers to the selected units only.
Referring to a village network, we thus collect incidence scores for all pairs of HHs
covered by the selection of a random sample of n HHs.

Naturally, in no case,we are in a position to extract the ‘behavior’ of the unsampled
HHs in respect of their out-degree movements in the entire network. It must be
noted that based on a sample of selected units, it is not our aim to ‘reproduce’ the
entire network ! That is virtually impossible. Instead, our objective is to focus on
some specific parameters of the population network and seek information on such
parameters, based on the sample network.

Further to this, itmay be argued thatData Type − 2, in away, provides a summary
of Data Type − 1. Also it transpires that Data Type − 3 is least informative. It
would be interesting to know how Data Type − 3 provides information about the
key parameters we are interested in, viz. population average out-degree (same as
population average in-degree) and population average reciprocity.

At this point, let us clarify that there is a fundamental difference between survey
sampling problems addressed in the literature and the one we are discussing here. In
sample surveys, we extract information [on study variables as also on auxiliary vari-
ables] primarily from and on the individual sampling units themselves [without any
regard to other sampling units] and the information relates to the selected sampling
units. In case of study of a network, since our primary focus in on the dyadic rela-
tionships, selecting a sample of units and confining to these selected units only will
shatter the pattern of dyadic relations among those sampled and those not sampled.
This calls for different techniques while dealing with such sample networks. Frank
(1977a, b, 1978) and others in a series of articles have systematically studied these
sampling and inference problems involved in network sampling.
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Our discussion here is based on the studies available in the literature and to start
with, we keep it at a basic level for estimation of basic dyadic-relational parame-
ters and we only present specific formulae based on the concept of simple random
sampling.

13.4 Inference Procedure

The population parameters to be considered are (i) average out-degree [which is the
same as the average in-degree] and (ii) average reciprocity.

We will exclusively confine to the population of N = 53 HHs and the sample of
n = 10HHs—selected according to SRSWOR(N = 53, n = 10) procedure. It may
be readily seen that Table13.1 exhibits the sample network based on Data T ype − 3.
Since Data T ype − 2provides a summaryof the explicit format of the networkunder
Data T ype − 1, we refrain ourselves from exhibiting Data T ype − 1 and instead
only tabulate below the summary statistics under Data T ype − 2.

13.5 Estimation of Average Out-Degree Based on Data
Type – 1/2

Procedure I: Upon selection of the n units according to SRSWOR(N , n) procedure,
for estimation of the population average out-degree, we propose the sample average
out-degree based on the available data (Table13.2).

Procedure I uses the realized E-values from the n selected sample units and
the estimate of the overall Ē is its sample analogue. The sample mean is usually

Table 13.1 Response profiles on ‘Seeking Financial Help from Neighboring HHs’

HH sl no. HH 1 HH 2 HH 3 HH 4 HH 5 HH 6 HH 7 HH 8 HH 9 HH 10 Total
(Yes)

1 – No No No Yes Yes Yes No No Yes 4

2 No – No No No No No No No No 0

3 Yes No – No Yes No No No Yes No 3

4 Yes No No – No Yes No Yes No Yes 4

5 No No No No – No No Yes No No 1

6 Yes No No No Yes – No Yes No No 3

7 No No No Yes No Yes – No No Yes 3

8 Yes No No Yes No No Yes – No Yes 4

9 No No No No Yes No No Yes – No 2

10 Yes No No No No Yes No No Yes – 3

Total (Yes) 5 0 0 2 4 4 2 4 2 4 27
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Table 13.2 Summary of
response profiles on ‘Seeking
Financial Help from
Neighboring HHs’

Selected HH sl no. Out-degree (E-value)

1 21

2 13

3 9

4 17

5 5

6 23

7 31

8 28

9 29

10 18

Total (Out-degree) 194

denoted by ēI , without explicitly showing the units in the sample composition. As
a numerically computed quantity, this is known as an ‘estimate,’ while the form
suggested above refers to an ‘estimator.’ We will not distinguish between the two
terms hereinafter. This estimator enjoys the property of unbiasedness. In the above,
the suffix I is used for the estimate to denote its dependence on the Data Type I.

In the above example, we compute an estimate for population average out-degree
as ēI = 194/10 = 19.4.

Remark 13.1 We should point out at this stage that the sample of selected units does
not provide any virtual representation of the original network at any rate. For some
features of the population network, such as the average out-degree, for example,
suitable estimates [such as its sample analogues]—enjoying some properties such as
unbiasedness—are constructed based on the sample data. Of course, such an estimate
would be useful if it possesses a smaller standard error [s.e.].

Below we provide a formula for computation of standard error of the sample
average.

V (ēI ) = (1/n − 1/N )S2e , S
2
e =

∑

i

(Ei − Ē)2/(N − 1).

V̂ = (1/n − 1/N )s2e , s
2
e =

∑

i

(Ei − ēI )
2/(n − 1).

For the above example, we compute estimate of variance of the sample average
as (1/10 − 1/53)[4004 − 3763.6]/9 = 2.166 and hence estimated s.e. = 1.472.

Remark 13.2 We find from the above that the sample size is a governing factor to
control and/or reduce the s.e. This brings out a very important contrasting scenario
viz., cost versus precision. Embarking on more units [i.e., increasing the sample
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size n] will lead to increased cost but there is gain in precision in terms of reduced
standard error of the resulting estimate. These are some of the issues extensively
dealt with in the literature of survey sampling theory and methods. Vide Cochran
(1977) and Hedayat and Sinha (1991), for example.

13.6 Inference Formulae for Data Type 3 Using Sample
Size n

Procedure II: Upon selection of the sample of size n by SRSWOR(N , n) procedure
from the population of N units, for estimation of the population average out-degree,
we propose the estimator

ēI I = [(N − 1)/n(n − 1)]
⎡

⎣
∑

i �= j

Ei j

⎤

⎦ ,

based on the available Data of Type-3, i.e., confining to the n selected units only.
The derivation of this result rests on a general theory for unbiased estimation

based on data drawn according to any method of sampling. Then we specialize to
simple random sampling and derive the above result. We refer to Frank (1978) for
technical details.

For the network considered above, an estimate of the population average out-
degree is then computed as (52/90)[27] = 15.6.

It turns out that the above estimator is unbiased for the population average out-
degree. Computation of its variance and the variance estimate from the sample data
[of Type-3] is a routine task for a survey statistician. We refer to Frank (1977a, b,
1978) for necessary technical details. One can follow the general and specific results
presented in these papers.

We present below the necessary formulae—taken from Bandyopadhyay et al.
(2011)—for computation of estimated s.e.

Note that the estimator above can be expressed as

ēI I = [(N − 1)/n(n − 1)]
∑

i

Ec
i

where Ec refers to the ‘curtailed’ E-value based on Data T ype − 3. In other words,
the estimate is the sample average out-degree, ‘inflated’ by the factor (N − 1)/(n −
1)—out-degree computations being confined to and based on the selected HHs only.

These curtailed Ec values are already shown in the list of 10 sample HHs in
Table13.1.

Expression for the variance and its estimator follow.
We use the notation b(i, j) = b( j,i) = Ei j + E ji ,

for all ordered pairs of units [i < j] in the population [as also in a random sample].
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Note that the population average out-degree can be expressed as

Ē =
⎡

⎣
∑ ∑

i< j

b(i, j)

⎤

⎦ /N ,

and, further, its estimate is given by

ˆ̄E = (N − 1)

⎡

⎣
∑ ∑

i< j

b(i, j)

⎤

⎦ /n(n − 1),

which coincides with ēI I given above. The variance of the estimate is, by definition,
given by

V (ēI I ) = E[ē2I I ] − E2[ēI I ].
To find an unbiased estimate of this variance of ēI I based on random sample data,

one way is to find an unbiased estimate of the square of Ē , say
ˆ̄ 2
E . Then an unbiased

estimate of the above variance is given by

ē2I I − ˆ̄E2

Next note that (Ē
2
) can be expressed as

(1/N 2)[T1 + T2 + T3]
where

T1 =
⎡

⎣
∑∑

i< j

b2(i, j)

⎤

⎦ ;

T2 =
⎡

⎣
∑ ∑ ∑

i< j<k

(b(i, j)b(i,k) + b(i, j)b( j,k) + b(i,k)b( j,k))

⎤

⎦ ;

T3 =
∑∑∑ ∑

i< j<k<t

(b(i, j)b(k,t) + b(i,k)b( j,t) + b(i,t)b( j,k))].

It follows that an unbiased estimate of (1/N 2)[T1 + T2 + T3] is given by

(1/N 2)[T̂1 + T̂2 + T̂3]

where the estimates are based exclusively on sample data [of Type 3] viz.,

T̂1 =
⎡

⎣
∑∑

i< j

b2(i, j)

⎤

⎦ N (2)/n(2);
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T̂2 =
⎡

⎣
∑ ∑ ∑

i< j<k

(b(i, j)b(i,k) + b(i, j)b( j,k) + b(i,k)b( j,k))

⎤

⎦ N (3)/n(3);

T̂3 =
⎡

⎣
∑ ∑ ∑ ∑

i< j<k<t

(b(i, j)b(k,t) + b(i,k)b( j,t) + b(i,t)b( j,k))

⎤

⎦ N (4)/n(4).

In the above, N (2) = N (N − 1); n(2) = n(n − 1) and so on for other higher pow-
ers.

13.7 Computations for the Hypothetical Example

We now turn back to the sample network for the example considered above. The
sampled HHs as also their out-degree sets are already displayed above in Table13.1.
These arise from Data Type-3.

We list below in Table13.3 the b(i, j)’s defined above.
Computations yield: [∑∑

i< j b(i, j)] = 27.
Note that an estimate of the population average out-degree is already computed as

ˆ̄EI I = (N − 1)[∑∑
i< j b(i, j)]/n(n − 1) = (52)(27)/90 = 15.6.

Next, we display in Table13.4 computations of
∑

j (>i) b
2
i j values for all i < n in

the sample.
Therefore, T̂1 = [N (2)/n(2)][∑∑

i< j b
2
(i, j)] = [53 × 52/90] × 32 = 0.9569.

Next, we need to compute
T̂2 = [∑∑∑

i< j<k(b(i, j)b(i,k) + b(i, j)b( j,k) + b(i,k)b( j,k))]N (3)/n(3).
Toward this, we display in Table13.5 computations of the above type for all

possible triplets.

Table 13.3 Computation of bi j values for all pairs (i, j) with i < j

HH sl no. HH 1 HH 2 HH 3 HH 4 HH 5 HH 6 HH 7 HH 8 HH 9 HH 10 Row
Totals

1 – 0 1 1 1 2 1 1 0 2 9

2 – – 0 0 0 0 0 0 0 0 0

3 – – – 0 1 0 0 0 1 0 2

4 – – – – 0 1 1 2 0 1 5

5 – – – – – 1 0 1 1 0 3

6 – – – – – – 1 1 0 1 3

7 – – – – – – – 1 0 1 2

8 – – – – – – – – 1 1 2

9 – – – – – – – – – 1 1



13.7 Computations for the Hypothetical Example 145

Table 13.4 Computation of∑
j (>i) b

2
i j -values for all i <

n in the sample

HH sl no. Sum of squares

1 13

2 0

3 2

4 6

5 3

6 3

7 2

8 2

9 1

Total 32

The above yields a total of 144.
Therefore,

T̂2 = [53 × 52 × 51]/[10 × 9 × 8] × 144 = 28, 111.20.
Finally, for

T̂3 =
⎡

⎣
∑ ∑ ∑ ∑

i< j<k<t

(b(i, j)b(k,t) + b(i,k)b( j,t) + b(i,t)b( j,k))

⎤

⎦ N (4)/n(4)

necessary computations are shown in Table13.6.
It turns out that the above yields a total of 204.
Hence,

T̂3 = [53 × 52 × 51 × 50]/[10 × 9 × 8 × 7] × 204 = 2, 84, 458.57.
Therefore, it follows that (Ē

2
) can be computed as

(1/N2)[T̂1 + T̂2 + T̂3] = [0.9569 + 28, 111.20 + 2, 84, 458.57]/[53 × 53] = 111.2747.

Finally, an unbiased estimate of the variance estimate is given by 15.62 −
111.2747 = 132.0853.

Thus, estimated s.e. of the estimated average out-degree = 11.4928.

13.8 Estimation of Average Reciprocity

We now turn to the problem of unbiased estimation of the measure of reciprocity
t.e., average reciprocity denoted by R̄. For completeness, we reproduce the definition
below.

We refer to the adjacency matrix I = ((Ii j )) where Ii j = 1 whenever there is a tie
originating at i and ending at j . Likewise, I ji = 1 whenever there is a tie originating
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Table 13.5 Computation of∑ ∑ ∑
i< j<k(b(i, j)b(i,k) +

b(i, j)b( j,k) + b(i,k)b( j,k))]
HH Sl No. in Pairs (i < j) sum over k (> j) of products

of pairs

(1, 2) 0

(1, 3) 11

(1, 4) 19

(1, 5) 12

(1, 6) 18

(1, 7) 8

(1, 8) 6

(1, 9) 2

(2, 3) 0

(2, 4) 0

(2, 5) 0

(2, 6) 0

(2, 7) 0

(2, 8) 0

(2, 9) 0

(3, 4) 0

(3, 5) 5

(3, 6) 0

(3, 7) 0

(3, 8) 1

(3, 9) 1

(4, 5) 3

(4, 6) 11

(4, 7) 8

(4, 8) 7

(4, 9) 1

(5, 6) 6

(5, 7) 1

(5, 8) 4

(5, 9) 1

(6, 7) 6

(6, 8) 4

(6, 9) 1

(7, 8) 4

(7, 9) 1

(8, 9) 3
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Table 13.6 Computation of
∑ ∑ ∑ ∑

i< j<k<t (b(i, j)b(k,t) + b(i,k)b( j,t) + b(i,t)b( j,k))] for all pos-
sible quadruplets

HH Sl No. in triplets Sum over highest suffix (t) in products of pairs

(1, 2, 3) 0

(1, 2, 4) 0

(1, 2, 5) 0

(1, 2, 6) 0

(1, 2, 7) 0

(1, 2, 8) 0

(1, 2, 9) 0

(1, 3, 4) 7

(1, 3, 5) 11

(1, 3, 6) 5

(1, 3, 7) 3

(1, 3, 8) 3

(1, 3, 9) 3

(1, 4, 5) 8

(1, 4, 6) 15

(1, 4, 7) 8

(1, 4, 8) 7

(1, 4, 9) 1

(1, 5, 6) 11

(1, 5, 7) 4

(1, 5, 8) 5

(1, 5, 9) 3

(1, 6, 7) 9

(1, 6, 8) 7

(1, 6, 9) 2

(1, 7, 8) 5

(1, 7, 9) 1

(1, 8, 9) 3

(2, -, -) 0

(3, 4, 5) 5

(3, 4, 6) 1

(3, 4, 7) 1

(3, 4, 8) 2

(3, 4, 9) 1

(3, 5, 6) 4

(3, 5, 7) 2

(3, 5, 8) 3

(3, 5, 9) 1

(3, 6, 7) 1

(continued)
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Table 13.6 (continued)

HH Sl No. in triplets Sum over highest suffix (t) in products of pairs

(3, 6, 8) 1

(3, 6, 9) 1

(3, 7, 8) 1

(3, 8, 9) 1

(4, 5, 6) 6

(4, 5, 7) 2

(4, 5, 8) 3

(4, 5, 9) 1

(4, 6, 7) 7

(4, 6, 8) 5

(4, 6, 9) 1

(4, 7, 8) 5

(4, 7, 9) 1

(4, 8, 9) 3

(5, 6, 7) 4

(5, 6, 8) 4

(5, 6, 9) 2

(5, 7, 8) 2

(5, 7, 9) 1

(5, 8, 9) 2

(6, 7, 8) 4

(6, 7, 9) 1

(6, 8, 9) 2

(7, 8, 9) 2

at j and terminating at i . Reciprocity between the pair of units i and j takes place
whenever Ii j = I ji = 1, i.e., whenever the units are involved in a reciprocal relation.
We may denote the ‘reciprocity’ score for a pair of units i and j as s(i, j) = Ii j I ji
so that s(i, j) = 1 whenever the units are involved in a reciprocal relation. Otherwise,
s(i, j) = 0. Therefore, average reciprocity in a population network, denoted in the
above by R̄, is the average of s-scores over all such N (N − 1)/2 pairs of units in the
population of N units
i.e., R̄ = ∑∑

i< j 2s(i, j)/N (N − 1).
We now embark upon the problem of unbiased estimation of this population

parameter R̄ based on a sample network of size n.
We propose an estimate of population R̄ by its sample analogue R̄(s) based on

the average of s-scores of n(n − 1)/2 pairs of units in the sample denoted by s.
It follows that the estimate R̄(s) is unbiased. Its variance computation is a routine
but non-trivial exercise. Further, deriving an expression for an estimate [based on
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sample reciprocity scores] of the variance of the estimator so derived is also a highly
non-trivial exercise. We omit the derivations altogether and simply state the results.

Below T (R) denotes the total reciprocity score in the population as a whole, i.e.,
T (R) = ∑ ∑

i< j s(i, j) so that R̄ = 2T (R)/N (N − 1). Moreover, while providing
sample-based estimators, we use the notation s for the selected sample. Thus, for
example, while i < j refers to all pairs of population units, i < j ε s refers to all
pairs of units in the selected sample s.

(1)T (R) =
∑ ∑

i< j

s(i, j);

(2)T̂ (R) = N (N − 1)

⎡

⎣
∑ ∑

i< j ε s

s(i, j)

⎤

⎦ /n(n − 1);

(3)T 2(R) =
⎡

⎣
∑∑

i< j

s2(i, j) + 2
∑∑ ∑

i< j<k

(s(i, j)s(i,k) + s(i, j)s( j,k) + s(i,k)s( j,k))

+2
∑ ∑ ∑ ∑

i< j<k<t

(s(i, j)s(k,t) + s(i,k)s( j,t) + s(i,t)s( j,k))

⎤

⎦

= [T1 + T2 + T3];

(4)T̂1 = N (N − 1)T1(s)/n(n − 1);

T̂2 = N (N − 1)(N − 2)T2(s)/n(n − 1)(n − 2);

T̂3 = N (N − 1)(N − 2)(N − 3)T3(s)/n(n − 1)(n − 2)(n − 3);

T1(s) =
∑ ∑

i< j ε s

s2(i, j);

T2(s) = 2
∑ ∑ ∑

i< j<k ε s

[s(i, j)s(i,k) + s(i, j)s( j,k) + s(i,k)s( j,k)];

T3(s) = 2
∑ ∑ ∑ ∑

i< j<k<t ε s

[s(i, j)s(k,t) + s(i,k)s( j,t) + s(i,t)s( j,k)]

(5)V (T̂ (R)) = E[(T̂ (R))2)] − T 2(R)

(6)V̂ (T̂ (R)) = [(T̂ (R))]2 − (T̂ 2(R)) = Square of (2) − Expression f rom (3) and (4)
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Table 13.7 Computation of si, j -values for all pairs (i, j) with i < j

HH Sl No. HH 1 HH 2 HH 3 HH 4 HH 5 HH 6 HH 7 HH 8 HH 9 HH 10 Row
totals

1 – 0 0 0 0 1 0 0 0 1 2

2 – – 0 0 0 0 0 0 0 0 0

3 – – – 0 0 0 0 0 0 0 0

4 – – – – 0 0 0 1 0 0 1

5 – – – – – 0 0 0 0 0 0

6 – – – – – – 0 0 0 0 0

7 – – – – – – – 0 0 0 0

8 – – – – – – – – 0 0 0

9 – – – – – – – – – 0 0

(7)R̄ = 2T (R)/N (N − 1) = 2
∑ ∑

i< j

s(i, j)/N (N − 1);

(8) ˆ̄R = R̄(s) = 2
∑ ∑

i< j ε s

s(i, j)/n(n − 1);

(9)V ( ˆ̄R) = 4V (T̂ (R))/N 2(N − 1)2;

(10)V̂ ( ˆ̄R) = 4V̂ (T̂ (R))/N 2(N − 1)2.

Computations for the illustrative example are shown below (Table13.7).
From the above table, it follows that

s1,6 = s1,10 = s4,8 = 1,

the rest being all 0’s.
Therefore, an estimate of the population average reciprocity [R̄], as given by the

sample average reciprocity, is computed as
2 × 3/10 × 9 = 6.67
Further to this, an estimate of total reciprocity T (R) is computed as 53 × 52 ×

0.0667 = 7, when approximated to a whole number.

For the computation of s.e. of the estimate of the population average reciprocity,
we follow the computational formulae given above. Note that s2(i, j) = s(i, j) since s(i, j)
is equal to either 0 or 1. Further to this, our computations are largely simplified since
only three of the si j ’s are 1.

We now proceed toward computation of estimated variance using (4).
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T1(s) =
∑ ∑

i< j ε s

s2(i, j) =
∑ ∑

i< j ε

s(i, j) = 3;

T2(s) = 2
∑ ∑ ∑

i< j<k ε s

(s(i, j)s(i,k) + s(i, j)s( j,k) + s(i,k)s( j,k))

= 2 × s1,6s1,10 = 2;

T3(s) = 2
∑ ∑ ∑ ∑

i< j<k<t ε s

(r(i, j)r(k,t) + r(i,k)r( j,t) + r(i,t)r( j,k))]

= 2 × [s1,6s4,8 + s1,10s4,8] = 4.

Therefore,

T̂1 = (53)(52)(3)/(10)(9) = 91.87;

T̂2 = (53)(52)(51)(2)/(10)(9)(8) = 390.4333;

T̂3 = (53)(52)(51)(50)(4)/(10)(9)(8)(7) = 5577.6190.

Hence,

T̂ 2(R) = T̂1 + T̂2 + T̂3 = 6059.9223.

From this, we compute estimated (R̄)2 as

ˆ̄R2 = 4T̂ 2(R)/N 2(N − 1)2 = 0.0032.

Further, ˆ̄R2 = 0.06672 = 0.0044.
Hence, finally,

estimated variance = 0.0044 − 0.0032 = 0.0012.

Thus, estimated s.e. = 0.0346.
It turns out that 95 percent confidence limits to the population average reciprocity

is given by sample average reciprocity plus/minus 2 times the estimated s.e. This
results into [0.0667 − 0.0692, 0.0667 + 0.0692] = [0, 0.136].
Remark 13.3 It was already observed that there are only three reciprocal pairs of
HHs in the random sample of 10 HHs from the hypothetical population of 53 HHs.
Accordingly, the population average reciprocity has been estimated as 0.0667. There-
fore, reciprocity is a ‘rare’ event for this population of HHs. This suggests that one
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may hardly expect any reciprocal pair of HHs among the selected 10 HHs and that
is indeed the case with the sample data exhibited before! In case of such ‘negligible’
incidence of ‘rare events,’ simple random sampling of a few HHs [like 10 in our
example] may not produce any substantial number of reciprocal pairs.

Other sampling methods are more resourceful in such cases. One such method is
the so-called inverse sampling method. We continue drawing HHs—at random and
one by one—and at each stage, we compute out-degree, in-degree, and reciprocity
values involving the most recent HH when included in the study. We continue sam-
pling of HHs and doing the counting till a specified reciprocity value, say 8, is
achieved or exceeded. We refer to Sinha (1977) and Goswami et al. (1990)—apart
from Frank et al. papers for discussions on these useful sampling strategies in the
context of dyadic networks.
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